메뉴 건너뛰기




Volumn 172, Issue 12-13, 2008, Pages 1470-1494

Enhanced qualitative probabilistic networks for resolving trade-offs

Author keywords

Probabilistic reasoning; Qualitative reasoning; Trade off resolution

Indexed keywords

COMPUTATIONAL METHODS; INFERENCE ENGINES; MATHEMATICAL MORPHOLOGY; NUMERICAL METHODS; PROBLEM SOLVING;

EID: 46549086008     PISSN: 00043702     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artint.2008.04.001     Document Type: Article
Times cited : (27)

References (34)
  • 1
    • 0002899365 scopus 로고
    • ARCO1: An application of belief networks to the oil market
    • D'Ambrosio B.D., Smets P., and Bonissone P.P. (Eds), Morgan Kaufmann Publishers, San Mateo, California
    • Abramson B. ARCO1: An application of belief networks to the oil market. In: D'Ambrosio B.D., Smets P., and Bonissone P.P. (Eds). Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence (1991), Morgan Kaufmann Publishers, San Mateo, California 1-8
    • (1991) Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence , pp. 1-8
    • Abramson, B.1
  • 4
    • 85167872262 scopus 로고
    • MUNIN. A causal probabilistic network for interpretation of electromyographic findings
    • McDermott J. (Ed), Morgan Kaufmann Publishers, Los Altos, California
    • Andreassen S., Woldbye M., Falck B., and Andersen S.K. MUNIN. A causal probabilistic network for interpretation of electromyographic findings. In: McDermott J. (Ed). Proceedings of the Tenth International Conference on Artificial Intelligence (1987), Morgan Kaufmann Publishers, Los Altos, California 366-372
    • (1987) Proceedings of the Tenth International Conference on Artificial Intelligence , pp. 366-372
    • Andreassen, S.1    Woldbye, M.2    Falck, B.3    Andersen, S.K.4
  • 5
    • 0002460150 scopus 로고
    • The alarm monitoring system: A case study with two probabilistic inference techniques for belief networks
    • Hunter J., Cookson J., and Wyatt J. (Eds), Springer-Verlag, Berlin
    • Beinlich I.A., Suermondt H.J., Chavez R.M., and Cooper G.F. The alarm monitoring system: A case study with two probabilistic inference techniques for belief networks. In: Hunter J., Cookson J., and Wyatt J. (Eds). Proceedings of the Second Conference on Artificial Intelligence in Medicine (1989), Springer-Verlag, Berlin 247-256
    • (1989) Proceedings of the Second Conference on Artificial Intelligence in Medicine , pp. 247-256
    • Beinlich, I.A.1    Suermondt, H.J.2    Chavez, R.M.3    Cooper, G.F.4
  • 7
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • Cooper G.F. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence 42 (1990) 393-405
    • (1990) Artificial Intelligence , vol.42 , pp. 393-405
    • Cooper, G.F.1
  • 8
    • 0002685042 scopus 로고
    • Symbolic reasoning with relative orders of magnitude
    • Bajcsy R. (Ed), Morgan Kaufmann Publishers, San Mateo, California
    • Dague P. Symbolic reasoning with relative orders of magnitude. In: Bajcsy R. (Ed). Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (1993), Morgan Kaufmann Publishers, San Mateo, California 1509-1514
    • (1993) Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence , pp. 1509-1514
    • Dague, P.1
  • 10
    • 46549087844 scopus 로고    scopus 로고
    • M.J. Druzdzel, Probabilistic Reasoning in decision support systems: From computation to common sense, PhD Thesis, Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1993
    • M.J. Druzdzel, Probabilistic Reasoning in decision support systems: From computation to common sense, PhD Thesis, Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1993
  • 11
    • 0027705257 scopus 로고
    • Efficient reasoning in qualitative probabilistic networks
    • Fikes R., and Lehnert W. (Eds), AAAI Press, Menlo Park, California
    • Druzdzel M.J., and Henrion M. Efficient reasoning in qualitative probabilistic networks. In: Fikes R., and Lehnert W. (Eds). Proceedings of the Eleventh National Conference on Artificial Intelligence (1993), AAAI Press, Menlo Park, California 548-553
    • (1993) Proceedings of the Eleventh National Conference on Artificial Intelligence , pp. 548-553
    • Druzdzel, M.J.1    Henrion, M.2
  • 12
    • 0010182790 scopus 로고
    • Intercausal reasoning with uninstantiated ancestor nodes
    • Heckerman D., and Mamdani A. (Eds), Morgan Kaufmann Publishers, San Francisco, California
    • Druzdzel M.J., and Henrion M. Intercausal reasoning with uninstantiated ancestor nodes. In: Heckerman D., and Mamdani A. (Eds). Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence (1993), Morgan Kaufmann Publishers, San Francisco, California 317-325
    • (1993) Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence , pp. 317-325
    • Druzdzel, M.J.1    Henrion, M.2
  • 13
    • 0002624201 scopus 로고
    • Elicitation of probabilities for belief networks: Combining qualitative and quantitative information
    • Besnard Ph., and Hanks S. (Eds), Morgan Kaufmann Publishers, San Francisco, California
    • Druzdzel M.J., and van der Gaag L.C. Elicitation of probabilities for belief networks: Combining qualitative and quantitative information. In: Besnard Ph., and Hanks S. (Eds). Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (1995), Morgan Kaufmann Publishers, San Francisco, California 141-148
    • (1995) Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence , pp. 141-148
    • Druzdzel, M.J.1    van der Gaag, L.C.2
  • 14
    • 85008015613 scopus 로고    scopus 로고
    • Building probabilistic networks: Where do the numbers come from?-Guest editors' introduction
    • Druzdzel M.J., and van der Gaag L.C. Building probabilistic networks: Where do the numbers come from?-Guest editors' introduction. IEEE Transactions on Knowledge and Data Engineering 12 (2000) 481-486
    • (2000) IEEE Transactions on Knowledge and Data Engineering , vol.12 , pp. 481-486
    • Druzdzel, M.J.1    van der Gaag, L.C.2
  • 16
    • 0041543710 scopus 로고
    • Reasoning with qualitative probabilities can be tractable
    • Dubois D., Wellman M.P., D'Ambrosio B., and Smets P. (Eds), Morgan Kaufmann Publishers, San Mateo, California
    • Goldszmidt M., and Pearl J. Reasoning with qualitative probabilities can be tractable. In: Dubois D., Wellman M.P., D'Ambrosio B., and Smets P. (Eds). Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence (1992), Morgan Kaufmann Publishers, San Mateo, California 112-120
    • (1992) Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence , pp. 112-120
    • Goldszmidt, M.1    Pearl, J.2
  • 20
    • 84907105901 scopus 로고
    • Converting a rule-based expert system into a belief network
    • Korver M., and Lucas P.J.F. Converting a rule-based expert system into a belief network. Medical Informatics 18 (1993) 219-241
    • (1993) Medical Informatics , vol.18 , pp. 219-241
    • Korver, M.1    Lucas, P.J.F.2
  • 21
    • 84874702789 scopus 로고    scopus 로고
    • J. Kwisthout, G. Tel, Complexity results for enhanced qualitative probabilistic networks, in: M. Studeny, J. Vomlel (Eds.), Proceedings of the Third Workshop on Probabilistic Graphical Models, Prague, 2006, pp. 171-178
    • J. Kwisthout, G. Tel, Complexity results for enhanced qualitative probabilistic networks, in: M. Studeny, J. Vomlel (Eds.), Proceedings of the Third Workshop on Probabilistic Graphical Models, Prague, 2006, pp. 171-178
  • 22
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • Lauritzen S.L., and Spiegelhalter D.J. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B 50 (1988) 157-224
    • (1988) Journal of the Royal Statistical Society, Series B , vol.50 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 23
    • 0006448246 scopus 로고    scopus 로고
    • Incremental tradeoff resolution in qualitative probabilistic networks
    • Cooper G.F., and Moral S. (Eds), Morgan Kaufmann Publishers, San Francisco, California
    • Liu C.-L., and Wellman M.P. Incremental tradeoff resolution in qualitative probabilistic networks. In: Cooper G.F., and Moral S. (Eds). Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (1998), Morgan Kaufmann Publishers, San Francisco, California 338-345
    • (1998) Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence , pp. 338-345
    • Liu, C.-L.1    Wellman, M.P.2
  • 24
    • 14544288172 scopus 로고    scopus 로고
    • Bayesian network modelling through qualitative patterns
    • Lucas P.J.F. Bayesian network modelling through qualitative patterns. Artificial Intelligence 163 (2005) 233-263
    • (2005) Artificial Intelligence , vol.163 , pp. 233-263
    • Lucas, P.J.F.1
  • 25
    • 0010142188 scopus 로고
    • Refining reasoning in qualitative probabilistic networks
    • Besnard Ph., and Hanks S. (Eds), Morgan Kaufmann Publishers, San Francisco, California
    • Parsons S. Refining reasoning in qualitative probabilistic networks. In: Besnard Ph., and Hanks S. (Eds). Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (1995), Morgan Kaufmann Publishers, San Francisco, California 427-434
    • (1995) Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence , pp. 427-434
    • Parsons, S.1
  • 27
    • 46549086338 scopus 로고    scopus 로고
    • S. Renooij, Qualitative approaches to quantifying probabilistic networks, Ph.D. Thesis, Institute for Information and Computing Sciences, Utrecht University, The Netherlands, 2001
    • S. Renooij, Qualitative approaches to quantifying probabilistic networks, Ph.D. Thesis, Institute for Information and Computing Sciences, Utrecht University, The Netherlands, 2001
  • 28
    • 1842691998 scopus 로고    scopus 로고
    • From qualitative to quantitative probabilistic networks
    • Darwiche A., and Friedman N. (Eds), Morgan Kaufmann Publishers, San Francisco, California
    • Renooij S., and van der Gaag L.C. From qualitative to quantitative probabilistic networks. In: Darwiche A., and Friedman N. (Eds). Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (2002), Morgan Kaufmann Publishers, San Francisco, California 422-429
    • (2002) Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence , pp. 422-429
    • Renooij, S.1    van der Gaag, L.C.2
  • 29
    • 8344258022 scopus 로고    scopus 로고
    • S. Renooij, S. Parsons, P. Pardieck, Using kappas as indicators of strength in qualitative probabilistic networks, in: T.D. Nielsen, N.L. Zhang, (Eds.), Proceedings of the Seventh European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Lecture Notes in Artificial Intelligence, 2003, pp. 87-99
    • S. Renooij, S. Parsons, P. Pardieck, Using kappas as indicators of strength in qualitative probabilistic networks, in: T.D. Nielsen, N.L. Zhang, (Eds.), Proceedings of the Seventh European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Lecture Notes in Artificial Intelligence, 2003, pp. 87-99
  • 30
    • 85012655967 scopus 로고
    • A general non-probabilistic theory of inductive reasoning
    • Shachter R.D., Levitt T.S., Kanal L.N., and Lemmer J.F. (Eds), Elsevier, Amsterdam
    • Spohn W. A general non-probabilistic theory of inductive reasoning. In: Shachter R.D., Levitt T.S., Kanal L.N., and Lemmer J.F. (Eds). Uncertainty in Artificial Intelligence, 4 (1990), Elsevier, Amsterdam 149-158
    • (1990) Uncertainty in Artificial Intelligence, 4 , pp. 149-158
    • Spohn, W.1
  • 33
    • 46549086443 scopus 로고    scopus 로고
    • Defining classes of influences for the acquisition of probability constraints for Bayesian networks
    • López de Mántaras R., and Saitta L. (Eds), IOS Press, Amsterdam
    • van der Gaag L.C., and Helsper E.M. Defining classes of influences for the acquisition of probability constraints for Bayesian networks. In: López de Mántaras R., and Saitta L. (Eds). Proceedings of the Sixteenth European Conference on Artificial Intelligence (2004), IOS Press, Amsterdam 1101-1102
    • (2004) Proceedings of the Sixteenth European Conference on Artificial Intelligence , pp. 1101-1102
    • van der Gaag, L.C.1    Helsper, E.M.2
  • 34
    • 0025471633 scopus 로고
    • Fundamental concepts of qualitative probabilistic networks
    • Wellman M.P. Fundamental concepts of qualitative probabilistic networks. Artificial Intelligence 44 (1990) 257-303
    • (1990) Artificial Intelligence , vol.44 , pp. 257-303
    • Wellman, M.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.