-
1
-
-
0028890381
-
-
Saunders, W. S.; Koshland, D.; Eshel, D.; Gibboms, I. R.; Hoyt, M. A. J. Cell Biol. 1995, 128, 617.
-
(1995)
J. Cell Biol
, vol.128
, pp. 617
-
-
Saunders, W.S.1
Koshland, D.2
Eshel, D.3
Gibboms, I.R.4
Hoyt, M.A.5
-
2
-
-
0034697099
-
-
Lowrey, P. L.; Shimomura, K.; Antoch, M. P.; Yamazaki, S.; Zemenides, P. D.; Ralph, M. R.; Menaker, M.; Takahashi, J. S. Science 2000, 288, 483.
-
(2000)
Science
, vol.288
, pp. 483
-
-
Lowrey, P.L.1
Shimomura, K.2
Antoch, M.P.3
Yamazaki, S.4
Zemenides, P.D.5
Ralph, M.R.6
Menaker, M.7
Takahashi, J.S.8
-
7
-
-
2942551253
-
-
Wong, M.; ost Gardel, I.; Reichman, D. R.; Weeks, E. R.; Valentine, M.; Bausch, A.; Weitz, D. A. Phys. Rev. Lett. 2004, 92, 178101.
-
(2004)
Phys. Rev. Lett
, vol.92
, pp. 178101
-
-
Wong, M.1
ost Gardel, I.2
Reichman, D.R.3
Weeks, E.R.4
Valentine, M.5
Bausch, A.6
Weitz, D.A.7
-
8
-
-
84906363622
-
-
Weiss, M.; Elsner, M.; Kartberg, F.; Nilsson, T. Biophys. J. 2004, 87.
-
(2004)
Biophys. J
, pp. 87
-
-
Weiss, M.1
Elsner, M.2
Kartberg, F.3
Nilsson, T.4
-
11
-
-
25144450143
-
-
Becskei, A.; Kaufmann, B. B.; van Oudenaarden, A. Nat. Genet. 2005, 37, 937.
-
(2005)
Nat. Genet
, vol.37
, pp. 937
-
-
Becskei, A.1
Kaufmann, B.B.2
van Oudenaarden, A.3
-
13
-
-
0037039976
-
-
Sung, J.; Barkai, E.; Silbey, R. J.; Lee, S. J. Chem. Phys. 2002, 116, 2338.
-
(2002)
J. Chem. Phys
, vol.116
, pp. 2338
-
-
Sung, J.1
Barkai, E.2
Silbey, R.J.3
Lee, S.4
-
14
-
-
0142211226
-
-
Seki, K.; Wojcik, M.; Tachiya, M. J. Chem. Phys. 2003, 119, 7525.
-
(2003)
J. Chem. Phys
, vol.119
, pp. 7525
-
-
Seki, K.1
Wojcik, M.2
Tachiya, M.3
-
15
-
-
33644697057
-
-
Sokolov, I. M.; Schmidt, M. G. W.; Sagues, F. Phys. Rev. E 2006, 73, 031102.
-
(2006)
Phys. Rev. E
, vol.73
, pp. 031102
-
-
Sokolov, I.M.1
Schmidt, M.G.W.2
Sagues, F.3
-
18
-
-
0004232671
-
-
Princeton University Press: Princeton, NJ
-
Berg, H. C. Random Walks in Biology; Princeton University Press: Princeton, NJ, 1993.
-
(1993)
Random Walks in Biology
-
-
Berg, H.C.1
-
19
-
-
1442354192
-
-
Ozbudak, E. M.; Thattai, M.; Lim, H. N.; Shraiman, B. I.; van Oudenaarden, A. Nature 2004, 427, 737.
-
(2004)
Nature
, vol.427
, pp. 737
-
-
Ozbudak, E.M.1
Thattai, M.2
Lim, H.N.3
Shraiman, B.I.4
van Oudenaarden, A.5
-
20
-
-
33845442827
-
-
van Zon, J. S.; Morelli, M. J.; Tanase-Nicola, S.; Rein ten Wolde, P. Biophys. J. 2006, 4350-5367.
-
(2006)
Biophys. J
, pp. 4350-5367
-
-
van Zon, J.S.1
Morelli, M.J.2
Tanase-Nicola, S.3
Rein ten Wolde, P.4
-
22
-
-
34547238654
-
-
Lomholt, M. A.; Zaid, I. M.; Metzler, R. Phys. Rev. Lett. 2007, 95, 200603.
-
(2007)
Phys. Rev. Lett
, vol.95
, pp. 200603
-
-
Lomholt, M.A.1
Zaid, I.M.2
Metzler, R.3
-
23
-
-
84906379685
-
-
Assuming, of course, that the second cumulant of the jump length distribution is also finite. There is currently no experimental evidence to suggest otherwise
-
Assuming, of course, that the second cumulant of the jump length distribution is also finite. There is currently no experimental evidence to suggest otherwise.
-
-
-
-
24
-
-
84906365298
-
-
In the process of completing this manuscript, we became aware of a similar work by Lomholt et al.22 Although our master equations are almost identical, our method of analysis leads to different conclusions. In particular, our eq 27 coincides with their eq 8 only if we allow P̃(ε, s) to be non-analytic, which would violate consistency. More specifically, both the boundary condition and subdiffusion equation are explicit asymptotic expressions for long time scales and large length scales and must be independent of the lattice spacing. The physical requirement that we do not allow random walkers to start on the origin arises naturally from the analysis of eq 24. However, the boundary conditions in eq 27, ref 22, and ref 14 are equivalent when walkers do not begin at the origin. Although our approach allows for the derivation of corrections to the Fokker-Planck equation from fast spatial fluctuations, as in ref 16, such corrections have little bearing on
-
22 Although our master equations are almost identical, our method of analysis leads to different conclusions. In particular, our eq 27 coincides with their eq 8 only if we allow P̃(ε, s) to be non-analytic, which would violate consistency. More specifically, both the boundary condition and subdiffusion equation are explicit asymptotic expressions for long time scales and large length scales and must be independent of the lattice spacing. The physical requirement that we do not allow random walkers to start on the origin arises naturally from the analysis of eq 24. However, the boundary conditions in eq 27, ref 22, and ref 14 are equivalent when walkers do not begin at the origin. Although our approach allows for the derivation of corrections to the Fokker-Planck equation from fast spatial fluctuations, as in ref 16, such corrections have little bearing on asymptotically slow dynamics. Indeed, the continuum limit is not useful if there are rapid spatial or temporal fluctuations. It is not presently clear how the differences in the boundary conditions would alter the picture of targeting in biological problems in the terms of weak ergodicity breaking, as presented in ref 22. This is a topic worthy of further investigation.
-
-
-
|