메뉴 건너뛰기




Volumn 299, Issue 1, 2004, Pages 221-226

ALUR dual renormings of Banach spaces

Author keywords

ALUR norm; Denting point; Dual Banach space; Kadec property; Rotund norm; Very strong extreme point

Indexed keywords


EID: 4644360239     PISSN: 0022247X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmaa.2004.04.066     Document Type: Article
Times cited : (3)

References (9)
  • 2
    • 84966247589 scopus 로고
    • Some geometric properties of the spheres in a normed linear space
    • K. Fan I. Glichsberg Some geometric properties of the spheres in a normed linear space Duke Math. J. 25 1958 553-568
    • (1958) Duke Math. J. , vol.25 , pp. 553-568
    • Fan, K.1    Glichsberg, I.2
  • 3
    • 33746992290 scopus 로고    scopus 로고
    • Trees in renorming theory
    • R. Haydon Trees in renorming theory Proc. London Math. Soc. 78 1999 541-585
    • (1999) Proc. London Math. Soc. , vol.78 , pp. 541-585
    • Haydon, R.1
  • 6
    • 0005276988 scopus 로고    scopus 로고
    • Kadec norms and Borel sets in a Banach space
    • M. Raja Kadec norms and Borel sets in a Banach space Studia Math. 136 1999 1-16
    • (1999) Studia Math. , vol.136 , pp. 1-16
    • Raja, M.1
  • 7
    • 0040631371 scopus 로고    scopus 로고
    • On locally uniformly rotund norms
    • M. Raja On locally uniformly rotund norms Mathematika 46 1999 343-358
    • (1999) Mathematika , vol.46 , pp. 343-358
    • Raja, M.1
  • 8
    • 0010082113 scopus 로고
    • Some more remarkable properties of the James Tree space
    • W. Schachermayer Some more remarkable properties of the James Tree space Contemp. Math. 85 1989 465-496
    • (1989) Contemp. Math. , vol.85 , pp. 465-496
    • Schachermayer, W.1
  • 9
    • 0001554619 scopus 로고
    • On a property of the norm which is close to local uniform convexity
    • S. Troyanski On a property of the norm which is close to local uniform convexity Math. Ann. 271 1985 305-313
    • (1985) Math. Ann. , vol.271 , pp. 305-313
    • Troyanski, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.