메뉴 건너뛰기




Volumn , Issue , 2002, Pages 589-596

Optimal projections of high dimensional data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 4644330903     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (9)

References (15)
  • 2
    • 0001493668 scopus 로고
    • Asymptotics of Graphical Projections
    • P. Diaconis, and D. Freedman. Asymptotics of Graphical Projections. The Annals of Statistics. 12(3): 793-815. 1984.
    • (1984) The Annals of Statistics , vol.12 , Issue.3 , pp. 793-815
    • Diaconis, P.1    Freedman, D.2
  • 4
    • 0000006342 scopus 로고
    • Non-linear data structure extraction using simple Hebbian networks
    • C. Fyfe, and R. Baddeley, Non-linear data structure extraction using simple Hebbian networks, Biological Cybernetics 72(6), p533-541. 1995.
    • (1995) Biological Cybernetics , vol.72 , Issue.6 , pp. 533-541
    • Fyfe, C.1    Baddeley, R.2
  • 7
    • 18044403793 scopus 로고    scopus 로고
    • Complexity Pursuit: Separating interesting components from time series
    • A.Hyvärinen, Complexity Pursuit: Separating interesting components from time series. Neural Computation, 13: 883-898. 2001.
    • (2001) Neural Computation , vol.13 , pp. 883-898
    • Hyvärinen, A.1
  • 9
    • 0028272776 scopus 로고
    • Representation and Separation of Signals Using Non-linear PCA Type Learning
    • J. Karhunen, and J. Joutsensalo, Representation and Separation of Signals Using Non-linear PCA Type Learning, Neural Networks, 7:113-127, 1994.
    • (1994) Neural Networks , vol.7 , pp. 113-127
    • Karhunen, J.1    Joutsensalo, J.2
  • 12
    • 0002399288 scopus 로고
    • Neural Networks, Principal Components and Subspaces
    • E. Oja, Neural Networks, Principal Components and Subspaces, International Journal of Neural Systems, 1:61-68. 1989.
    • (1989) International Journal of Neural Systems , vol.1 , pp. 61-68
    • Oja, E.1
  • 13
    • 0001387410 scopus 로고
    • Principal Components Analysis by Homogeneous Neural Networks, part 1, The Weighted Subspace Criterion
    • E. Oja, H. Ogawa, and J. Wangviwattana,. Principal Components Analysis by Homogeneous Neural Networks, part 1, The Weighted Subspace Criterion, IEICE Transaction on Information and Systems, E75D: 366-375. 1992.
    • (1992) IEICE Transaction on Information and Systems , vol.E75D , pp. 366-375
    • Oja, E.1    Ogawa, H.2    Wangviwattana, J.3
  • 15
    • 0027206958 scopus 로고
    • Least Mean Square Error Reconstruction for Self-Organizing Nets
    • L. Xu, Least Mean Square Error Reconstruction for Self-Organizing Nets", Neural Networks, Vol. 6, pp. 627-648. 1993.
    • (1993) Neural Networks , vol.6 , pp. 627-648
    • Xu, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.