메뉴 건너뛰기




Volumn 38, Issue 1, 2005, Pages 41-49

An SVM classifier incorporating simultaneous noise reduction and feature selection: Illustrative case examples

Author keywords

Classification; Conditional entropy; SVM; Symbolization

Indexed keywords

ALGORITHMS; ENTROPY; FEATURE EXTRACTION; PRINCIPAL COMPONENT ANALYSIS; SET THEORY; STATISTICAL METHODS;

EID: 4644267885     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2004.06.002     Document Type: Article
Times cited : (31)

References (61)
  • 2
    • 0003650666 scopus 로고    scopus 로고
    • Ph.D. Thesis, Computer Science Department, School of Engineering, Stanford University
    • G.H. John, Enhancements to the data mining process, Ph.D. Thesis, Computer Science Department, School of Engineering, Stanford University, 1997.
    • (1997) Enhancements to the Data Mining Process
    • John, G.H.1
  • 6
    • 0003914835 scopus 로고    scopus 로고
    • B.M. Morgan (Ed.), Morgan Kaufmann, Los Altos, CA
    • P. Langley, Elements of Machine Learning, in: B.M. Morgan (Ed.), Morgan Kaufmann, Los Altos, CA, 1996.
    • (1996) Elements of Machine Learning
    • Langley, P.1
  • 9
    • 0000686085 scopus 로고
    • Learning hard concepts through constructive induction: Framework and rationale
    • A.L. Rendell, R. Sheshu, Learning hard concepts through constructive induction: framework and rationale, Comput. Intel. 6 (1990) 247-270.
    • (1990) Comput. Intel. , vol.6 , pp. 247-270
    • Rendell, A.L.1    Sheshu, R.2
  • 11
    • 63249112814 scopus 로고
    • Dimensionality and sample size considerations
    • Krishnaiah, I.N. Kanal (Eds.), North-Holland, Amsterdam
    • A. Jain, B. Chandrasekaran, Dimensionality and sample size considerations, in: Krishnaiah, I.N. Kanal (Eds.), Pattern Recognition Practice, Vol. 2, North-Holland, Amsterdam, 1982, pp. 835-855.
    • (1982) Pattern Recognition Practice , vol.2 , pp. 835-855
    • Jain, A.1    Chandrasekaran, B.2
  • 13
    • 84948597805 scopus 로고
    • A comparison of seven techniques for choosing subsets of pattern recognition properties
    • A. Mucciardi, E.E. Gose, A comparison of seven techniques for choosing subsets of pattern recognition properties, IEEE Trans. Comput. 20 (9) (1971) 1023-1031.
    • (1971) IEEE Trans. Comput. , vol.20 , Issue.9 , pp. 1023-1031
    • Mucciardi, A.1    Gose, E.E.2
  • 14
    • 0030248249 scopus 로고    scopus 로고
    • Improved feature screening in feedforward neural networks
    • J.M. Steppe, K.W. Bauer, Improved feature screening in feedforward neural networks, Neurocomputing 13 (1996) 47-58.
    • (1996) Neurocomputing , vol.13 , pp. 47-58
    • Steppe, J.M.1    Bauer, K.W.2
  • 17
    • 0001977664 scopus 로고
    • Selection of relevant features in machine learning
    • P. Langely, Selection of relevant features in machine learning, in: AAAI Fall Symposium on Relevance, 1994, pp. 140-144.
    • (1994) AAAI Fall Symposium on Relevance , pp. 140-144
    • Langely, P.1
  • 22
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirkpatrick, C. Gelatt, M. Vecci, Optimization by simulated annealing, Science 220 (1983) 671-680.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.2    Vecci, M.3
  • 23
    • 0003552733 scopus 로고
    • An evaluation of feature selection methods and their application to computer security
    • University of California at Davis
    • J. Doak, An evaluation of feature selection methods and their application to computer security, CSE Technical Report 92-18, University of California at Davis, 1992.
    • (1992) CSE Technical Report , vol.92 , Issue.18
    • Doak, J.1
  • 27
    • 85146422424 scopus 로고
    • A practical approach to feature selection
    • D. Sleeman, J. Edwards (Eds.), Alberdeen, Italy, Morgan Kaufmann, Los Altos, CA
    • K. Kira, L.A. Rendell, A practical approach to feature selection, in: D. Sleeman, J. Edwards (Eds.), Proceedings of Ninth International Conference on Machine Learning, Alberdeen, Italy, Morgan Kaufmann, Los Altos, CA, 1992, pp. 249-256.
    • (1992) Proceedings of Ninth International Conference on Machine Learning , pp. 249-256
    • Kira, K.1    Rendell, L.A.2
  • 28
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of RELIEF
    • I. Kononenko, Estimating attributes: analysis and extensions of RELIEF, in: European Conference on Machine Learning, 1994, pp. 171-182.
    • (1994) European Conference on Machine Learning , pp. 171-182
    • Kononenko, I.1
  • 29
    • 33845629152 scopus 로고
    • Using decision trees to improve case-based learning
    • Amherst, MA, Morgan Kaufmann, Los Altos, CA
    • C. Cardie, Using decision trees to improve case-based learning, in: Proceedings of the Tenth International Conference on Machine Learning, Amherst, MA, Morgan Kaufmann, Los Altos, CA, 1993, pp. 25-32.
    • (1993) Proceedings of the Tenth International Conference on Machine Learning , pp. 25-32
    • Cardie, C.1
  • 30
    • 0002715112 scopus 로고    scopus 로고
    • A probabilistic approach to feature selection: A filter solution, machine learning
    • Morgan Kaufmann, Los Altos, CA
    • H. Liu, H. Setiono, A probabilistic approach to feature selection: a filter solution, machine learning, in: Proceedings of the 13th International Conference on Machine Learning, Morgan Kaufmann, Los Altos, CA, 1996.
    • (1996) Proceedings of the 13th International Conference on Machine Learning
    • Liu, H.1    Setiono, H.2
  • 31
    • 0026453958 scopus 로고
    • Training a 3-node neural network is NP-complete
    • A.L. Blum, R.L. Rivest, Training a 3-node neural network is NP-complete, Neural Networks 5 (1992) 117-127.
    • (1992) Neural Networks , vol.5 , pp. 117-127
    • Blum, A.L.1    Rivest, R.L.2
  • 32
    • 0001815269 scopus 로고
    • Constructing optimal binary decision trees is NP-complete
    • L. Hyafil, R.L. Rivest, Constructing optimal binary decision trees is NP-complete, Informat. Process. Lett. 5 (1) (1976) 15-17.
    • (1976) Informat. Process. Lett. , vol.5 , Issue.1 , pp. 15-17
    • Hyafil, L.1    Rivest, R.L.2
  • 33
    • 0036722182 scopus 로고    scopus 로고
    • Information-entropic analysis of chaotic time series: Determination of time-delays and dynamical coupling
    • R.K. Azad, J.S. Rao, R. Ramaswamy, Information-entropic analysis of chaotic time series: determination of time-delays and dynamical coupling, Chaos Solitons Fractals 14 (2002) 633-641.
    • (2002) Chaos Solitons Fractals , vol.14 , pp. 633-641
    • Azad, R.K.1    Rao, J.S.2    Ramaswamy, R.3
  • 34
    • 0031555597 scopus 로고    scopus 로고
    • Symbolic analysis of chaotic signals and turbulent fluctuations
    • M. Lehrman, A.B. Rechester, R.B. White, Symbolic analysis of chaotic signals and turbulent fluctuations, Phys. Rev. Lett. 78 (1) (1997) 54-57.
    • (1997) Phys. Rev. Lett. , vol.78 , Issue.1 , pp. 54-57
    • Lehrman, M.1    Rechester, A.B.2    White, R.B.3
  • 35
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes, V. Vapnik, Support vector networks, Machine Learn. 20 (1995) 273-297.
    • (1995) Machine Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 37
    • 0742304284 scopus 로고    scopus 로고
    • Support vector classification with parameter tuning assisted by agent based technique
    • Abhijit Kulkarni, V.K. Jayaraman, B.D. Kulkami, Support vector classification with parameter tuning assisted by agent based technique, Comput. Chem. Eng. 28 (2004) 311-318.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 311-318
    • Kulkarni, A.1    Jayaraman, V.K.2    Kulkami, B.D.3
  • 38
    • 4644223817 scopus 로고    scopus 로고
    • Symbolic time series analysis and economic regimes
    • G. Brida, L.F. Punzo, Symbolic time series analysis and economic regimes, IDEE Working papers series, 2001, pp. 2001-03.
    • (2001) IDEE Working Papers Series , pp. 2001-2003
    • Brida, G.1    Punzo, L.F.2
  • 40
    • 0034300534 scopus 로고    scopus 로고
    • Validity of threshold-crossing analysis of symbolic dynamics from chaotic time series
    • E.M. Bollt, T. Stanford, Y.C. Lai, K. Zyczkowski, Validity of threshold-crossing analysis of symbolic dynamics from chaotic time series, Phys. Rev. Lett. 85 (16) (2000) 3524-3527.
    • (2000) Phys. Rev. Lett. , vol.85 , Issue.16 , pp. 3524-3527
    • Bollt, E.M.1    Stanford, T.2    Lai, Y.C.3    Zyczkowski, K.4
  • 41
    • 0035877078 scopus 로고    scopus 로고
    • What symbolic dynamics do we get with a misplaced partition?: On the validity of threshold crossings analysis of chaotic time-series
    • E.M. Bollt, T. Stanford, Y.C. Lai, K. Zyczkowski, What symbolic dynamics do we get with a misplaced partition?: on the validity of threshold crossings analysis of chaotic time-series, Physica D 154 (2001) 259-286.
    • (2001) Physica D , vol.154 , pp. 259-286
    • Bollt, E.M.1    Stanford, T.2    Lai, Y.C.3    Zyczkowski, K.4
  • 43
    • 0001674069 scopus 로고
    • Analysis of the solar spike events by means of symbolic dynamics methods
    • U. Schwarz, O. Benz, J. Kurths, A. Witt, Analysis of the solar spike events by means of symbolic dynamics methods, Astronomy Astrophys. 277 (1993) 215-224.
    • (1993) Astronomy Astrophys. , vol.277 , pp. 215-224
    • Schwarz, U.1    Benz, O.2    Kurths, J.3    Witt, A.4
  • 44
    • 0000770575 scopus 로고    scopus 로고
    • Data compression and information retrieval via symbolization
    • X.Z. Tang, E.R. Tracy, Data compression and information retrieval via symbolization, Chaos 8 (3) (1998) 688-696.
    • (1998) Chaos , vol.8 , Issue.3 , pp. 688-696
    • Tang, X.Z.1    Tracy, E.R.2
  • 45
    • 0001243238 scopus 로고
    • Symbol sequence statistics in noisy chaotic signal reconstruction
    • X.Z. Tang, E.R. Tracy, A.D. Boozer, A. DeBrauw, R. Brown, Symbol sequence statistics in noisy chaotic signal reconstruction, Phys. Rev. E 51 (5) (1995) 3871-3889.
    • (1995) Phys. Rev. E , vol.51 , Issue.5 , pp. 3871-3889
    • Tang, X.Z.1    Tracy, E.R.2    Boozer, A.D.3    Debrauw, A.4    Brown, R.5
  • 47
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • R. Burbidge, M. Trotter, B. Buxton, S. Holden, Drug design by machine learning: support vector machines for pharmaceutical data analysis, Comput. Chem. 26 (2001) 5-14.
    • (2001) Comput. Chem. , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 48
    • 0038644483 scopus 로고    scopus 로고
    • Support vector machines for predicting rRNA-, RNA-, and DNA-binding proteins from amino acid sequence
    • Y.D. Caia, S.L. Linb, Support vector machines for predicting rRNA-, RNA-, and DNA-binding proteins from amino acid sequence, Biochim. Biophys. Acta (BBA) - Proteins Proteomics 1648 (1-2) (2003) 127-133.
    • (2003) Biochim. Biophys. Acta (BBA) - Proteins Proteomics , vol.1648 , Issue.1-2 , pp. 127-133
    • Caia, Y.D.1    Linb, S.L.2
  • 49
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
    • S. Hua, Z. Sun, A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach, J. Mol. Biol. 308 (2001) 397-407.
    • (2001) J. Mol. Biol. , vol.308 , pp. 397-407
    • Hua, S.1    Sun, Z.2
  • 50
    • 0037212915 scopus 로고    scopus 로고
    • Identifying splicing sites in eukaryotic RNA: Support vector machine approach
    • Y.F. Sun, X.D. Fan, Y.D. Li, Identifying splicing sites in eukaryotic RNA: support vector machine approach, Comput. Biol. Med. 33 (1) (2003) 17-29.
    • (2003) Comput. Biol. Med. , vol.33 , Issue.1 , pp. 17-29
    • Sun, Y.F.1    Fan, X.D.2    Li, Y.D.3
  • 51
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Min. Knowledge Discovery 2 (1998) 121-167.
    • (1998) Data Min. Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 53
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • University of Southampton
    • S. Gunn, Support vector machines for classification and regression, ISIS Group Technical Report, University of Southampton, 1998.
    • (1998) ISIS Group Technical Report
    • Gunn, S.1
  • 54
    • 0006472145 scopus 로고    scopus 로고
    • Support vector machines for multiclass pattern recognition
    • M. Verleysen (Ed.), D. Facto Press, Brussels
    • J. Weston, C. Watkins, Support vector machines for multiclass pattern recognition, in: M. Verleysen (Ed.), Proceedings of the Seventh ESANN, D. Facto Press, Brussels, 1999, pp. 219-224.
    • (1999) Proceedings of the Seventh ESANN , pp. 219-224
    • Weston, J.1    Watkins, C.2
  • 55
    • 0347585601 scopus 로고    scopus 로고
    • Kernel logistic regression and the import vector machine
    • Vancouver, British Columbia, Canada
    • J. Zhu, T. Hastie, Kernel logistic regression and the import vector machine, in: Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2001, pp. 1081-1088.
    • (2001) Advances in Neural Information Processing Systems , pp. 1081-1088
    • Zhu, J.1    Hastie, T.2
  • 56
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, Choosing multiple parameters for support vector machines, Machine Learn. 46 (2001) 131-160 Online version is at: http://www-connex.lip6.fr/~chapelle/.
    • (2001) Machine Learn. , vol.46 , pp. 131-160
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 58
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • K. Duan, S.S. Keerthi, A.N. Poo, Evaluation of simple performance measures for tuning SVM hyperparameters, Neurocomputing 51 (2003) 41-59.
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3
  • 59
    • 0036738840 scopus 로고    scopus 로고
    • Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
    • S.S. Keerthi, Efficient tuning of SVM hyperparameters using radius/ margin bound and iterative algorithms, IEEE Trans. Neural Networks 13 (2002) 1225-1229.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 1225-1229
    • Keerthi, S.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.