-
2
-
-
0003650666
-
-
Ph.D. Thesis, Computer Science Department, School of Engineering, Stanford University
-
G.H. John, Enhancements to the data mining process, Ph.D. Thesis, Computer Science Department, School of Engineering, Stanford University, 1997.
-
(1997)
Enhancements to the Data Mining Process
-
-
John, G.H.1
-
3
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi, G. John, Wrappers for feature subset selection, Artificial Intel, (special issue on relevance) 97 (1-2) (1996) 273-324.
-
(1996)
Artificial Intel, (Special Issue on Relevance)
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
5
-
-
0000012317
-
Toward optimal feature selection
-
Bari, Italy
-
D. Koller, M. Sahami, Toward optimal feature selection, in: Proceedings of the 13th International Conference on Machine Learning (ML), Bari, Italy, 1996, pp. 284-292.
-
(1996)
Proceedings of the 13th International Conference on Machine Learning (ML)
, pp. 284-292
-
-
Koller, D.1
Sahami, M.2
-
6
-
-
0003914835
-
-
B.M. Morgan (Ed.), Morgan Kaufmann, Los Altos, CA
-
P. Langley, Elements of Machine Learning, in: B.M. Morgan (Ed.), Morgan Kaufmann, Los Altos, CA, 1996.
-
(1996)
Elements of Machine Learning
-
-
Langley, P.1
-
7
-
-
0001901666
-
Induction of selective Bayesian Classifiers
-
Seattle, WA, Morgan Kaufmann, Los Altos, CA
-
P. Langley, S. Sage, Induction of selective Bayesian Classifiers, in: Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence, Seattle, WA, Morgan Kaufmann, Los Altos, CA, 1994, pp. 399-406.
-
(1994)
Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence
, pp. 399-406
-
-
Langley, P.1
Sage, S.2
-
8
-
-
0003602164
-
-
Kluwer Academic Publisher, Norwell, MA
-
H. Liu, H. Motoda, Feature Extraction Construction and Selection, A Data Mining Perspective, Kluwer Academic Publisher, Norwell, MA, 1998.
-
(1998)
Feature Extraction Construction and Selection, A Data Mining Perspective
-
-
Liu, H.1
Motoda, H.2
-
9
-
-
0000686085
-
Learning hard concepts through constructive induction: Framework and rationale
-
A.L. Rendell, R. Sheshu, Learning hard concepts through constructive induction: framework and rationale, Comput. Intel. 6 (1990) 247-270.
-
(1990)
Comput. Intel.
, vol.6
, pp. 247-270
-
-
Rendell, A.L.1
Sheshu, R.2
-
11
-
-
63249112814
-
Dimensionality and sample size considerations
-
Krishnaiah, I.N. Kanal (Eds.), North-Holland, Amsterdam
-
A. Jain, B. Chandrasekaran, Dimensionality and sample size considerations, in: Krishnaiah, I.N. Kanal (Eds.), Pattern Recognition Practice, Vol. 2, North-Holland, Amsterdam, 1982, pp. 835-855.
-
(1982)
Pattern Recognition Practice
, vol.2
, pp. 835-855
-
-
Jain, A.1
Chandrasekaran, B.2
-
13
-
-
84948597805
-
A comparison of seven techniques for choosing subsets of pattern recognition properties
-
A. Mucciardi, E.E. Gose, A comparison of seven techniques for choosing subsets of pattern recognition properties, IEEE Trans. Comput. 20 (9) (1971) 1023-1031.
-
(1971)
IEEE Trans. Comput.
, vol.20
, Issue.9
, pp. 1023-1031
-
-
Mucciardi, A.1
Gose, E.E.2
-
14
-
-
0030248249
-
Improved feature screening in feedforward neural networks
-
J.M. Steppe, K.W. Bauer, Improved feature screening in feedforward neural networks, Neurocomputing 13 (1996) 47-58.
-
(1996)
Neurocomputing
, vol.13
, pp. 47-58
-
-
Steppe, J.M.1
Bauer, K.W.2
-
16
-
-
85099325734
-
Irrelevant features and the subset selection problem
-
G.H. John, R. Kohavi, K. Pfleger, Irrelevant features and the subset selection problem, in: International Conference on Machine Learning, 1994, pp. 121-129.
-
(1994)
International Conference on Machine Learning
, pp. 121-129
-
-
John, G.H.1
Kohavi, R.2
Pfleger, K.3
-
17
-
-
0001977664
-
Selection of relevant features in machine learning
-
P. Langely, Selection of relevant features in machine learning, in: AAAI Fall Symposium on Relevance, 1994, pp. 140-144.
-
(1994)
AAAI Fall Symposium on Relevance
, pp. 140-144
-
-
Langely, P.1
-
19
-
-
84928746885
-
-
Prentice-Hall, Englewood Cliffs, NJ
-
P.A. Devijver, J. Kittler, Pattern Recognition: A Statistical Approach, Prentice-Hall, Englewood Cliffs, NJ, 1982.
-
(1982)
Pattern Recognition: A Statistical Approach
-
-
Devijver, P.A.1
Kittler, J.2
-
20
-
-
0006500676
-
Greedy attribute selection
-
New Brunswick, NJ, USA
-
R. Caruana, D. Freitag, Greedy attribute selection, in: Proceedings of the 11th International Conference on Machine Learning, New Brunswick, NJ, USA, 1994, pp. 28-36.
-
(1994)
Proceedings of the 11th International Conference on Machine Learning
, pp. 28-36
-
-
Caruana, R.1
Freitag, D.2
-
21
-
-
0013337086
-
A comparative evaluation of sequential feature selection algorithms
-
D. Fisher, H. Lenz (Eds.), Ft. Lauderdale, FL
-
D.W. Aha, R.L. Bankert, A comparative evaluation of sequential feature selection algorithms, in: D. Fisher, H. Lenz (Eds.), Proceedings of the 5th International Workshop on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, 1995, pp. 1-7.
-
(1995)
Proceedings of the 5th International Workshop on Artificial Intelligence and Statistics
, pp. 1-7
-
-
Aha, D.W.1
Bankert, R.L.2
-
22
-
-
26444479778
-
Optimization by simulated annealing
-
S. Kirkpatrick, C. Gelatt, M. Vecci, Optimization by simulated annealing, Science 220 (1983) 671-680.
-
(1983)
Science
, vol.220
, pp. 671-680
-
-
Kirkpatrick, S.1
Gelatt, C.2
Vecci, M.3
-
23
-
-
0003552733
-
An evaluation of feature selection methods and their application to computer security
-
University of California at Davis
-
J. Doak, An evaluation of feature selection methods and their application to computer security, CSE Technical Report 92-18, University of California at Davis, 1992.
-
(1992)
CSE Technical Report
, vol.92
, Issue.18
-
-
Doak, J.1
-
25
-
-
85099479344
-
Learning with many irrelevant features
-
AAAI Press, Anaheim, CA
-
H. Almauallium, T.G. Dietterich, Learning with many irrelevant features, Proceedings of Ninth National Conference on Artificial Intelligence, Vol. 2, AAAI Press, Anaheim, CA, 1991, pp. 547-552.
-
(1991)
Proceedings of Ninth National Conference on Artificial Intelligence
, vol.2
, pp. 547-552
-
-
Almauallium, H.1
Dietterich, T.G.2
-
26
-
-
0000012317
-
Toward optimal feature selection
-
Bari, Italy
-
D. Koller, M. Sahami, Toward optimal feature selection, in: Proceedings of the 13th International Conference on Machine Learning (ML), Bari, Italy, 1996, pp. 284-292.
-
(1996)
Proceedings of the 13th International Conference on Machine Learning (ML)
, pp. 284-292
-
-
Koller, D.1
Sahami, M.2
-
27
-
-
85146422424
-
A practical approach to feature selection
-
D. Sleeman, J. Edwards (Eds.), Alberdeen, Italy, Morgan Kaufmann, Los Altos, CA
-
K. Kira, L.A. Rendell, A practical approach to feature selection, in: D. Sleeman, J. Edwards (Eds.), Proceedings of Ninth International Conference on Machine Learning, Alberdeen, Italy, Morgan Kaufmann, Los Altos, CA, 1992, pp. 249-256.
-
(1992)
Proceedings of Ninth International Conference on Machine Learning
, pp. 249-256
-
-
Kira, K.1
Rendell, L.A.2
-
28
-
-
84992726552
-
Estimating attributes: Analysis and extensions of RELIEF
-
I. Kononenko, Estimating attributes: analysis and extensions of RELIEF, in: European Conference on Machine Learning, 1994, pp. 171-182.
-
(1994)
European Conference on Machine Learning
, pp. 171-182
-
-
Kononenko, I.1
-
29
-
-
33845629152
-
Using decision trees to improve case-based learning
-
Amherst, MA, Morgan Kaufmann, Los Altos, CA
-
C. Cardie, Using decision trees to improve case-based learning, in: Proceedings of the Tenth International Conference on Machine Learning, Amherst, MA, Morgan Kaufmann, Los Altos, CA, 1993, pp. 25-32.
-
(1993)
Proceedings of the Tenth International Conference on Machine Learning
, pp. 25-32
-
-
Cardie, C.1
-
30
-
-
0002715112
-
A probabilistic approach to feature selection: A filter solution, machine learning
-
Morgan Kaufmann, Los Altos, CA
-
H. Liu, H. Setiono, A probabilistic approach to feature selection: a filter solution, machine learning, in: Proceedings of the 13th International Conference on Machine Learning, Morgan Kaufmann, Los Altos, CA, 1996.
-
(1996)
Proceedings of the 13th International Conference on Machine Learning
-
-
Liu, H.1
Setiono, H.2
-
31
-
-
0026453958
-
Training a 3-node neural network is NP-complete
-
A.L. Blum, R.L. Rivest, Training a 3-node neural network is NP-complete, Neural Networks 5 (1992) 117-127.
-
(1992)
Neural Networks
, vol.5
, pp. 117-127
-
-
Blum, A.L.1
Rivest, R.L.2
-
32
-
-
0001815269
-
Constructing optimal binary decision trees is NP-complete
-
L. Hyafil, R.L. Rivest, Constructing optimal binary decision trees is NP-complete, Informat. Process. Lett. 5 (1) (1976) 15-17.
-
(1976)
Informat. Process. Lett.
, vol.5
, Issue.1
, pp. 15-17
-
-
Hyafil, L.1
Rivest, R.L.2
-
33
-
-
0036722182
-
Information-entropic analysis of chaotic time series: Determination of time-delays and dynamical coupling
-
R.K. Azad, J.S. Rao, R. Ramaswamy, Information-entropic analysis of chaotic time series: determination of time-delays and dynamical coupling, Chaos Solitons Fractals 14 (2002) 633-641.
-
(2002)
Chaos Solitons Fractals
, vol.14
, pp. 633-641
-
-
Azad, R.K.1
Rao, J.S.2
Ramaswamy, R.3
-
34
-
-
0031555597
-
Symbolic analysis of chaotic signals and turbulent fluctuations
-
M. Lehrman, A.B. Rechester, R.B. White, Symbolic analysis of chaotic signals and turbulent fluctuations, Phys. Rev. Lett. 78 (1) (1997) 54-57.
-
(1997)
Phys. Rev. Lett.
, vol.78
, Issue.1
, pp. 54-57
-
-
Lehrman, M.1
Rechester, A.B.2
White, R.B.3
-
35
-
-
34249753618
-
Support vector networks
-
C. Cortes, V. Vapnik, Support vector networks, Machine Learn. 20 (1995) 273-297.
-
(1995)
Machine Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
37
-
-
0742304284
-
Support vector classification with parameter tuning assisted by agent based technique
-
Abhijit Kulkarni, V.K. Jayaraman, B.D. Kulkami, Support vector classification with parameter tuning assisted by agent based technique, Comput. Chem. Eng. 28 (2004) 311-318.
-
(2004)
Comput. Chem. Eng.
, vol.28
, pp. 311-318
-
-
Kulkarni, A.1
Jayaraman, V.K.2
Kulkami, B.D.3
-
38
-
-
4644223817
-
Symbolic time series analysis and economic regimes
-
G. Brida, L.F. Punzo, Symbolic time series analysis and economic regimes, IDEE Working papers series, 2001, pp. 2001-03.
-
(2001)
IDEE Working Papers Series
, pp. 2001-2003
-
-
Brida, G.1
Punzo, L.F.2
-
40
-
-
0034300534
-
Validity of threshold-crossing analysis of symbolic dynamics from chaotic time series
-
E.M. Bollt, T. Stanford, Y.C. Lai, K. Zyczkowski, Validity of threshold-crossing analysis of symbolic dynamics from chaotic time series, Phys. Rev. Lett. 85 (16) (2000) 3524-3527.
-
(2000)
Phys. Rev. Lett.
, vol.85
, Issue.16
, pp. 3524-3527
-
-
Bollt, E.M.1
Stanford, T.2
Lai, Y.C.3
Zyczkowski, K.4
-
41
-
-
0035877078
-
What symbolic dynamics do we get with a misplaced partition?: On the validity of threshold crossings analysis of chaotic time-series
-
E.M. Bollt, T. Stanford, Y.C. Lai, K. Zyczkowski, What symbolic dynamics do we get with a misplaced partition?: on the validity of threshold crossings analysis of chaotic time-series, Physica D 154 (2001) 259-286.
-
(2001)
Physica D
, vol.154
, pp. 259-286
-
-
Bollt, E.M.1
Stanford, T.2
Lai, Y.C.3
Zyczkowski, K.4
-
42
-
-
0003031097
-
Quantitative analysis of heart-rate variability
-
J. Kurths, A. Voss, P. Saparin, A. Witt, H.J. Kleiner, N. Wessel, Quantitative analysis of heart-rate variability, Chaos 5 (1) (1995) 88-94.
-
(1995)
Chaos
, vol.5
, Issue.1
, pp. 88-94
-
-
Kurths, J.1
Voss, A.2
Saparin, P.3
Witt, A.4
Kleiner, H.J.5
Wessel, N.6
-
43
-
-
0001674069
-
Analysis of the solar spike events by means of symbolic dynamics methods
-
U. Schwarz, O. Benz, J. Kurths, A. Witt, Analysis of the solar spike events by means of symbolic dynamics methods, Astronomy Astrophys. 277 (1993) 215-224.
-
(1993)
Astronomy Astrophys.
, vol.277
, pp. 215-224
-
-
Schwarz, U.1
Benz, O.2
Kurths, J.3
Witt, A.4
-
44
-
-
0000770575
-
Data compression and information retrieval via symbolization
-
X.Z. Tang, E.R. Tracy, Data compression and information retrieval via symbolization, Chaos 8 (3) (1998) 688-696.
-
(1998)
Chaos
, vol.8
, Issue.3
, pp. 688-696
-
-
Tang, X.Z.1
Tracy, E.R.2
-
45
-
-
0001243238
-
Symbol sequence statistics in noisy chaotic signal reconstruction
-
X.Z. Tang, E.R. Tracy, A.D. Boozer, A. DeBrauw, R. Brown, Symbol sequence statistics in noisy chaotic signal reconstruction, Phys. Rev. E 51 (5) (1995) 3871-3889.
-
(1995)
Phys. Rev. E
, vol.51
, Issue.5
, pp. 3871-3889
-
-
Tang, X.Z.1
Tracy, E.R.2
Boozer, A.D.3
Debrauw, A.4
Brown, R.5
-
46
-
-
0034602774
-
Knowledge-based analysis of microarray gene expression data by using support vector machines
-
M.P.S. Brown, W.N. Grundy, D. Lin, N. Cristianini, C.W. Sugnet, T.S. Furey, M. Ares, D. Haussler, Knowledge-based analysis of microarray gene expression data by using support vector machines, Proc. Natl. Acad. Sci. USA 97 (2000) 2-267.
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 2-267
-
-
Brown, M.P.S.1
Grundy, W.N.2
Lin, D.3
Cristianini, N.4
Sugnet, C.W.5
Furey, T.S.6
Ares, M.7
Haussler, D.8
-
47
-
-
0034740222
-
Drug design by machine learning: Support vector machines for pharmaceutical data analysis
-
R. Burbidge, M. Trotter, B. Buxton, S. Holden, Drug design by machine learning: support vector machines for pharmaceutical data analysis, Comput. Chem. 26 (2001) 5-14.
-
(2001)
Comput. Chem.
, vol.26
, pp. 5-14
-
-
Burbidge, R.1
Trotter, M.2
Buxton, B.3
Holden, S.4
-
48
-
-
0038644483
-
Support vector machines for predicting rRNA-, RNA-, and DNA-binding proteins from amino acid sequence
-
Y.D. Caia, S.L. Linb, Support vector machines for predicting rRNA-, RNA-, and DNA-binding proteins from amino acid sequence, Biochim. Biophys. Acta (BBA) - Proteins Proteomics 1648 (1-2) (2003) 127-133.
-
(2003)
Biochim. Biophys. Acta (BBA) - Proteins Proteomics
, vol.1648
, Issue.1-2
, pp. 127-133
-
-
Caia, Y.D.1
Linb, S.L.2
-
49
-
-
0035957531
-
A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
-
S. Hua, Z. Sun, A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach, J. Mol. Biol. 308 (2001) 397-407.
-
(2001)
J. Mol. Biol.
, vol.308
, pp. 397-407
-
-
Hua, S.1
Sun, Z.2
-
50
-
-
0037212915
-
Identifying splicing sites in eukaryotic RNA: Support vector machine approach
-
Y.F. Sun, X.D. Fan, Y.D. Li, Identifying splicing sites in eukaryotic RNA: support vector machine approach, Comput. Biol. Med. 33 (1) (2003) 17-29.
-
(2003)
Comput. Biol. Med.
, vol.33
, Issue.1
, pp. 17-29
-
-
Sun, Y.F.1
Fan, X.D.2
Li, Y.D.3
-
51
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Min. Knowledge Discovery 2 (1998) 121-167.
-
(1998)
Data Min. Knowledge Discovery
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
52
-
-
0003798635
-
-
Cambridge University Press, Cambridge, UK
-
N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, UK, 2000.
-
(2000)
An Introduction to Support Vector Machines
-
-
Cristianini, N.1
Shawe-Taylor, J.2
-
53
-
-
0003425664
-
Support vector machines for classification and regression
-
University of Southampton
-
S. Gunn, Support vector machines for classification and regression, ISIS Group Technical Report, University of Southampton, 1998.
-
(1998)
ISIS Group Technical Report
-
-
Gunn, S.1
-
54
-
-
0006472145
-
Support vector machines for multiclass pattern recognition
-
M. Verleysen (Ed.), D. Facto Press, Brussels
-
J. Weston, C. Watkins, Support vector machines for multiclass pattern recognition, in: M. Verleysen (Ed.), Proceedings of the Seventh ESANN, D. Facto Press, Brussels, 1999, pp. 219-224.
-
(1999)
Proceedings of the Seventh ESANN
, pp. 219-224
-
-
Weston, J.1
Watkins, C.2
-
55
-
-
0347585601
-
Kernel logistic regression and the import vector machine
-
Vancouver, British Columbia, Canada
-
J. Zhu, T. Hastie, Kernel logistic regression and the import vector machine, in: Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2001, pp. 1081-1088.
-
(2001)
Advances in Neural Information Processing Systems
, pp. 1081-1088
-
-
Zhu, J.1
Hastie, T.2
-
56
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, Choosing multiple parameters for support vector machines, Machine Learn. 46 (2001) 131-160 Online version is at: http://www-connex.lip6.fr/~chapelle/.
-
(2001)
Machine Learn.
, vol.46
, pp. 131-160
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
58
-
-
0037382208
-
Evaluation of simple performance measures for tuning SVM hyperparameters
-
K. Duan, S.S. Keerthi, A.N. Poo, Evaluation of simple performance measures for tuning SVM hyperparameters, Neurocomputing 51 (2003) 41-59.
-
(2003)
Neurocomputing
, vol.51
, pp. 41-59
-
-
Duan, K.1
Keerthi, S.S.2
Poo, A.N.3
-
59
-
-
0036738840
-
Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
-
S.S. Keerthi, Efficient tuning of SVM hyperparameters using radius/ margin bound and iterative algorithms, IEEE Trans. Neural Networks 13 (2002) 1225-1229.
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, pp. 1225-1229
-
-
Keerthi, S.S.1
-
61
-
-
0003776055
-
-
Wiley, New York
-
G.V. Reklaitis, A. Ravindran, K.M. Ragsdell, Engineering Optimization Methods and Applications, Wiley, New York, 1983.
-
(1983)
Engineering Optimization Methods and Applications
-
-
Reklaitis, G.V.1
Ravindran, A.2
Ragsdell, K.M.3
|