-
1
-
-
0000180631
-
Approximate inverse for linear and some nonlinear problems
-
A. K. Louis, "Approximate inverse for linear and some nonlinear problems," Inverse Problems vol. 12, no. 2, pp. 175-190, 1996.
-
(1996)
Inverse Problems
, vol.12
, Issue.2
, pp. 175-190
-
-
Louis, A.K.1
-
2
-
-
0000713718
-
A unified approach to regularization methods for linear ill-posed problems
-
A. K. Louis, "A unified approach to regularization methods for linear ill-posed problems," Inverse Problems vol. 15, no. 2, pp. 489-498, 1999.
-
(1999)
Inverse Problems
, vol.15
, Issue.2
, pp. 489-498
-
-
Louis, A.K.1
-
3
-
-
0342401444
-
The 3-D doppler transform: Elementary properties and computation of reconstruction kernels
-
T. Schuster, "The 3-D doppler transform: Elementary properties and computation of reconstruction kernels," Inverse Problems vol. 16, no. 3, pp. 701-722, 2000.
-
(2000)
Inverse Problems
, vol.16
, Issue.3
, pp. 701-722
-
-
Schuster, T.1
-
5
-
-
0346316886
-
Filter design in three-dimensional cone beam tomography: Circular scanning geometry
-
A. K. Louis, "Filter design in three-dimensional cone beam tomography: Circular scanning geometry.," Inverse Problems, vol. 19, no. 6, pp. S31-S40, 2003.
-
(2003)
Inverse Problems
, vol.19
, Issue.6
-
-
Louis, A.K.1
-
6
-
-
0021445363
-
Practical cone beam algorithm
-
L. Feldkamp, L. Davis, and J. W. Kress, "Practical cone beam algorithm," J. Optical Soc. Amer. A vol. 1, no. 6, pp. 612-619, 1984.
-
(1984)
J. Optical Soc. Amer. A
, vol.1
, Issue.6
, pp. 612-619
-
-
Feldkamp, L.1
Davis, L.2
Kress, J.W.3
-
7
-
-
0028392621
-
A cone-beam reconstruction algorithm using shift-invariant filtering and cone-beam, backprojection
-
Jan
-
M. Defrise and R. Clack, "A cone-beam reconstruction algorithm using shift-invariant filtering and cone-beam, backprojection," IEEE Trans. Med. Imag. vol. 13, no. 1, pp. 186-1956, Jan. 1994.
-
(1994)
IEEE Trans. Med. Imag
, vol.13
, Issue.1
, pp. 186-1956
-
-
Defrise, M.1
Clack, R.2
-
8
-
-
21144439799
-
A unified framework for exact cone-beam reconstruction formulas
-
S. Zhao, H. Yu, and G. Wang, "A unified framework for exact cone-beam reconstruction formulas," Med. Phys. vol. 32, no. 6, pp. 1712-1721, 2005.
-
(2005)
Med. Phys
, vol.32
, Issue.6
, pp. 1712-1721
-
-
Zhao, S.1
Yu, H.2
Wang, G.3
-
9
-
-
0037036595
-
Analysis CF an exact inversion algorithm for spiral cone-beam CT
-
A. Katsevich, "Analysis CF an exact inversion algorithm for spiral cone-beam CT," Phys. Med. Biol. vol. 47, no. 15, pp. 2583-2597, 2002.
-
(2002)
Phys. Med. Biol
, vol.47
, Issue.15
, pp. 2583-2597
-
-
Katsevich, A.1
-
10
-
-
0003704980
-
Analyse d'un systeme d'imageiie 3-D par reconstruction a partir de radiographies x en géométric conique,
-
Ph.D. dissertation, Ecole Nationale Superieure des Télécommun, Paris, France
-
P. Grangeat, "Analyse d'un systeme d'imageiie 3-D par reconstruction a partir de radiographies x en géométric conique," Ph.D. dissertation, Ecole Nationale Superieure des Télécommun., Paris, France, 1987.
-
(1987)
-
-
Grangeat, P.1
-
11
-
-
0002018761
-
Mathematical framework of cone team 3-D reconstruction via the first derivative of the Radon transform
-
P. Grangeat, G. T. Herman, A. K. Louis, and F. Natterer, Eds, Mathematical Methods in Tomography. New York: Springer-Verlag
-
P. Grangeat, G. T. Herman, A. K. Louis, and F. Natterer, Eds., "Mathematical framework of cone team 3-D reconstruction via the first derivative of the Radon transform.," in Mathematical Methods in Tomography. New York: Springer-Verlag, 1991, Lecture Notes Math., pp. 66-97.
-
(1991)
Lecture Notes Math
, pp. 66-97
-
-
-
12
-
-
62249146706
-
Development of algorithms in computerized tomography
-
A. K. Louis, G. Olafsson and E. T. Quinto, Eds, Boston, MA: AMS
-
A. K. Louis, , G. Olafsson and E. T. Quinto, Eds., "Development of algorithms in computerized tomography," in The Radon Transform, Inverse Problems, and Tomography (Proceedings of Symposia in Applied Mathematics). Boston, MA: AMS, 2006, vol. 63, pp. 25-42.
-
(2006)
The Radon Transform, Inverse Problems, and Tomography (Proceedings of Symposia in Applied Mathematics)
, vol.63
, pp. 25-42
-
-
-
13
-
-
0012339859
-
Die approximative inverse als rekonstruktionsmethode in der rontgen-computertomographie,
-
Ph.D. dissertation, Mathematisch- Naturwissenschaftliche Fakultät der Universität des Saarlandes, Saarlandes, Germany
-
R. Dietz, "Die approximative inverse als rekonstruktionsmethode in der rontgen-computertomographie," Ph.D. dissertation, Mathematisch- Naturwissenschaftliche Fakultät der Universität des Saarlandes, Saarlandes, Germany, 1999.
-
(1999)
-
-
Dietz, R.1
|