-
1
-
-
0001350531
-
An iterative method for the Helmholtz equation
-
A. BAYLISS, C. I. GOLDSTEIN, AND E. TURKEL, An iterative method for the Helmholtz equation, J. Comput. Phys., 49 (1983), pp. 443-457.
-
(1983)
J. Comput. Phys
, vol.49
, pp. 443-457
-
-
BAYLISS, A.1
GOLDSTEIN, C.I.2
TURKEL, E.3
-
2
-
-
3142611583
-
On a class of preconditioners for the Helmholtz equation
-
Y. A. ERLANGGA, C. VUIK, AND C. W. OOSTERLEE, On a class of preconditioners for the Helmholtz equation, Appl. Numer. Math., 50 (2005), pp. 409-425.
-
(2005)
Appl. Numer. Math
, vol.50
, pp. 409-425
-
-
ERLANGGA, Y.A.1
VUIK, C.2
OOSTERLEE, C.W.3
-
3
-
-
33644865436
-
Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation
-
Y. A. ERLANGGA, C. W. OOSTERLEE, AND C. VUIK, Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation, Appl. Numer. Math., 56 (2006), pp. 648-666.
-
(2006)
Appl. Numer. Math
, vol.56
, pp. 648-666
-
-
ERLANGGA, Y.A.1
OOSTERLEE, C.W.2
VUIK, C.3
-
4
-
-
33746033769
-
A novel multigrid based preconditioner for heterogeneous Helmholtz problems
-
Y. A. ERLANGGA, C. W. OOSTERLEE, AND C. VUIK, A novel multigrid based preconditioner for heterogeneous Helmholtz problems, SIAM J. Sci. Comput., 27 (2006), pp. 1471-1492.
-
(2006)
SIAM J. Sci. Comput
, vol.27
, pp. 1471-1492
-
-
ERLANGGA, Y.A.1
OOSTERLEE, C.W.2
VUIK, C.3
-
5
-
-
0041049302
-
Any nonincreasing convergence curve is possible for GMRES
-
A. GREENBAUM, V. PTÁK, AND Z. STRAKOŠ, Any nonincreasing convergence curve is possible for GMRES, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 465-469.
-
(1996)
SIAM J. Matrix Anal. Appl
, vol.17
, pp. 465-469
-
-
GREENBAUM, A.1
PTÁK, V.2
STRAKOŠ, Z.3
-
7
-
-
35248889945
-
Preconditioning techniques for the solution of the Helmholtz equation by the finite element method, in Computational Science and Its Applications (ICCSA 2003), Part II
-
V. Kumar et al, eds, Springer, Berlin
-
R. KECHROUD, A. SOULAIMANI, AND Y. SAAD, Preconditioning techniques for the solution of the Helmholtz equation by the finite element method, in Computational Science and Its Applications (ICCSA 2003), Part II, Lecture Notes in Comput. Sci. 2668, V. Kumar et al., eds., Springer, Berlin, 2003, pp. 847-858.
-
(2003)
Lecture Notes in Comput. Sci
, vol.2668
, pp. 847-858
-
-
KECHROUD, R.1
SOULAIMANI, A.2
SAAD, Y.3
-
8
-
-
33644866567
-
Preconditioned Iterative Solution of the 2D Helmholtz Equation
-
Tech. Report 02/12, Oxford Computer Laboratory, Oxford, UK
-
A. L. LAIRD AND M. B. GILES, Preconditioned Iterative Solution of the 2D Helmholtz Equation, Tech. Report 02/12, Oxford Computer Laboratory, Oxford, UK, 2002.
-
(2002)
-
-
LAIRD, A.L.1
GILES, M.B.2
-
9
-
-
33751211178
-
Preconditioning harmonic unsteady potential flow calculations
-
A. L. LAIRD AND M. B. GILES, Preconditioning harmonic unsteady potential flow calculations, AAIA J., 44 (2006), pp. 2654-2662.
-
(2006)
AAIA J
, vol.44
, pp. 2654-2662
-
-
LAIRD, A.L.1
GILES, M.B.2
-
10
-
-
0025447701
-
Preconditioning and boundary conditions
-
T. A. MANTEUFFEL AND S. V. PARTER, Preconditioning and boundary conditions, SIAM J. Numer. Anal., 27 (1990), pp. 656-694.
-
(1990)
SIAM J. Numer. Anal
, vol.27
, pp. 656-694
-
-
MANTEUFFEL, T.A.1
PARTER, S.V.2
-
11
-
-
0037296994
-
Separation-of- variables as a preconditioner for an iterative Helmholtz solver
-
R. E. PLESSIX AND W. A. MULDER, Separation-of- variables as a preconditioner for an iterative Helmholtz solver, Appl. Numer. Math., 44 (2003), pp. 385-400.
-
(2003)
Appl. Numer. Math
, vol.44
, pp. 385-400
-
-
PLESSIX, R.E.1
MULDER, W.A.2
-
12
-
-
0000048673
-
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
-
Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856-869.
-
(1986)
SIAM J. Sci. Stat. Comput
, vol.7
, pp. 856-869
-
-
SAAD, Y.1
SCHULTZ, M.H.2
-
13
-
-
33747879159
-
Numerical methods and nature
-
E. TURKEL, Numerical methods and nature, J. Sci. Comput., 28 (2006), pp. 549-570.
-
(2006)
J. Sci. Comput
, vol.28
, pp. 549-570
-
-
TURKEL, E.1
-
14
-
-
0000005482
-
Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems
-
H. A. VAN DER VORST, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 631-644.
-
(1992)
SIAM J. Sci. Stat. Comput
, vol.13
, pp. 631-644
-
-
VAN DER VORST, H.A.1
|