메뉴 건너뛰기




Volumn , Issue , 2005, Pages 50-61

The Wiener-Hopf technique for impenetrable wedge problems

Author keywords

[No Author keywords available]

Indexed keywords

ASYMPTOTIC ANALYSIS; DIFFRACTION;

EID: 46249107933     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/DD.2005.204879     Document Type: Conference Paper
Times cited : (33)

References (10)
  • 2
    • 0042977340 scopus 로고    scopus 로고
    • The Wiener-Hopf technique for impenetrable wedges having arbitrary aperture angle
    • Daniele, V.G., 2003, The Wiener-Hopf technique for impenetrable wedges having arbitrary aperture angle, SIAM Journal of Applied Mathematics, vol.63, n.4. pp. 1442-1460.
    • (2003) SIAM Journal of Applied Mathematics , vol.63 , Issue.4 , pp. 1442-1460
    • Daniele, V.G.1
  • 5
    • 46249110060 scopus 로고    scopus 로고
    • Daniele, V.G., 2004, An introduction to the Wiener-Hopf technique for the solution of electromagnetic problems, Rep.1-2004, Dipartimento Elettronica, Politecnico Torino.
    • Daniele, V.G., 2004, An introduction to the Wiener-Hopf technique for the solution of electromagnetic problems, Rep.1-2004, Dipartimento Elettronica, Politecnico Torino.
  • 8
    • 0005326424 scopus 로고    scopus 로고
    • Far field analysis of the Malyuzhinets solution for plane and surface waves diffraction by an impedance wedge
    • Norris, A.N, Osipov, A.V., 1999, Far field analysis of the Malyuzhinets solution for plane and surface waves diffraction by an impedance wedge, Wave Motion, vol. 30, pp. 69-89.
    • (1999) Wave Motion , vol.30 , pp. 69-89
    • Norris, A.N.1    Osipov, A.V.2
  • 10
    • 0016129803 scopus 로고
    • A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface
    • Kouyoumjian, R.G., Pathak, P. H., 1974, A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proc. IEEE, vol. 62, pp. 1448-1461.
    • (1974) Proc. IEEE , vol.62 , pp. 1448-1461
    • Kouyoumjian, R.G.1    Pathak, P.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.