-
2
-
-
0030246542
-
On projection algorithms for solving convex feasibility problems
-
H.H. Bauschke and J.M. Borwein (1996). On projection algorithms for solving convex feasibility problems. SIAM Rev. 38:367-426.
-
(1996)
SIAM Rev
, vol.38
, pp. 367-426
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
3
-
-
0002351732
-
The method of cyclic projections for closed convex sets in Hilbert space
-
Recent Dev. Optimiz. Theory Nonlinear Anal
-
H.H. Bauschke, J.M. Borwein, and A.S. Lewis (1997). The method of cyclic projections for closed convex sets in Hilbert space. In Recent Dev. Optimiz. Theory Nonlinear Anal., Vol. 204. Contemp. Math. Series, pp. 1-38.
-
(1997)
Contemp. Math. Series
, vol.204
, pp. 1-38
-
-
Bauschke, H.H.1
Borwein, J.M.2
Lewis, A.S.3
-
4
-
-
0000256894
-
Nonexpansive projections and resolvents of accretive operators in Banach spaces
-
R.E. Bruck and S. Reich (1977). Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3:459-470.
-
(1977)
Houston J. Math
, vol.3
, pp. 459-470
-
-
Bruck, R.E.1
Reich, S.2
-
5
-
-
39449105966
-
-
D. Butnariu, R. Davidi, G.T. Herman, and I.G. Kazantsev (2007). Stable convergence behavior of projection methods for convex feasibility and optimization problems. IEEE J. Selected Topics Signal Processing 1:540-547.
-
D. Butnariu, R. Davidi, G.T. Herman, and I.G. Kazantsev (2007). Stable convergence behavior of projection methods for convex feasibility and optimization problems. IEEE J. Selected Topics Signal Processing 1:540-547.
-
-
-
-
6
-
-
39449117883
-
Convergence to fixed points of inexact orbits of Bregman-monotone and of nonexpansive operators in Banach spaces
-
Yokahama Publishers, Yokahama, pp
-
D. Butnariu, S. Reich, and A.J. Zaslavski (2006). Convergence to fixed points of inexact orbits of Bregman-monotone and of nonexpansive operators in Banach spaces. Fixed Point Theory and Its Applications. Yokahama Publishers, Yokahama, pp. 11-32.
-
(2006)
Fixed Point Theory and Its Applications
, pp. 11-32
-
-
Butnariu, D.1
Reich, S.2
Zaslavski, A.J.3
-
7
-
-
77956677460
-
Averaging strings of sequential iterations for convex feasibility problems
-
Haifa, Stud. Comput. Math, 8, North-Holland, Amsterdam, pp
-
Y. Censor, T. Elfing, and G.T. Herman (2001). Averaging strings of sequential iterations for convex feasibility problems. In Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications. Haifa, 2000, Stud. Comput. Math., 8, North-Holland, Amsterdam, pp. 101-113.
-
(2000)
Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications
, pp. 101-113
-
-
Censor, Y.1
Elfing, T.2
Herman, G.T.3
-
9
-
-
0001054069
-
Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari.
-
G. Cimmino (1938). Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari. La Ricerca Scientifica (Roma) 9:326-333.
-
(1938)
La Ricerca Scientifica (Roma)
, vol.9
, pp. 326-333
-
-
Cimmino, G.1
-
10
-
-
0035251770
-
On the numerical robustness of a parallel projection method in signal synthesis
-
P.L. Combettes (2001). On the numerical robustness of a parallel projection method in signal synthesis. IEEE Signal Processing Lett. 8:45-47.
-
(2001)
IEEE Signal Processing Lett
, vol.8
, pp. 45-47
-
-
Combettes, P.L.1
-
11
-
-
84966230219
-
Ergodic theorems in demography
-
J.E. Cohen (1979). Ergodic theorems in demography. Bull. Am. Math. Soc. 1:275-295.
-
(1979)
Bull. Am. Math. Soc
, vol.1
, pp. 275-295
-
-
Cohen, J.E.1
-
12
-
-
0039756214
-
A parallel projection method for finding a common point of a family of convex sets
-
A.R. De Pierro and A.N. Iusem (1985). A parallel projection method for finding a common point of a family of convex sets. Pesquisa Operacional 5:1-20.
-
(1985)
Pesquisa Operacional
, vol.5
, pp. 1-20
-
-
De Pierro, A.R.1
Iusem, A.N.2
-
13
-
-
0000274159
-
Convergence of unrestricted products of nonexpansive mappings in spaces with the Opial property
-
J. Dye, T. Kuczumow, P.K. Lin, and S. Reich (1996). Convergence of unrestricted products of nonexpansive mappings in spaces with the Opial property. Nonlinear Anal. 26:767-773.
-
(1996)
Nonlinear Anal
, vol.26
, pp. 767-773
-
-
Dye, J.1
Kuczumow, T.2
Lin, P.K.3
Reich, S.4
-
15
-
-
0000927821
-
Asymptotic properties for inhomogeneous iterations of nonlinear operators
-
T. Fujimoto and U. Krause (1988). Asymptotic properties for inhomogeneous iterations of nonlinear operators. SIAM J. Math. Anal. 19:841-853.
-
(1988)
SIAM J. Math. Anal
, vol.19
, pp. 841-853
-
-
Fujimoto, T.1
Krause, U.2
-
16
-
-
0347466422
-
Classical Theory of Nonexpansive Mappings
-
Kluwer, Dordrecht, pp
-
K. Goebel and W.A. Kirk (2001). Classical Theory of Nonexpansive Mappings. Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, pp. 49-91.
-
(2001)
Handbook of Metric Fixed Point Theory
, pp. 49-91
-
-
Goebel, K.1
Kirk, W.A.2
-
18
-
-
0001684890
-
Unrestricted products of contractions in Banach spaces
-
P.K. Lin (1995). Unrestricted products of contractions in Banach spaces, Nonlinear Anal. 24:1103-1108.
-
(1995)
Nonlinear Anal
, vol.24
, pp. 1103-1108
-
-
Lin, P.K.1
-
19
-
-
51249185817
-
Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces
-
O. Nevanlinna and S. Reich (1979). Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces. Israel J. Math. 32:44-58.
-
(1979)
Israel J. Math
, vol.32
, pp. 44-58
-
-
Nevanlinna, O.1
Reich, S.2
-
21
-
-
0000036624
-
Some nonlinear weak ergodic theorems
-
R.D. Nussbaum (1990). Some nonlinear weak ergodic theorems. SIAM J. Math. Anal. 21:436-460.
-
(1990)
SIAM J. Math. Anal
, vol.21
, pp. 436-460
-
-
Nussbaum, R.D.1
-
22
-
-
84968481460
-
Weak convergence of the sequence of successive approximations for nonexpansive mappings
-
Z. Opial (1967). Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73:591-597.
-
(1967)
Bull. Am. Math. Soc
, vol.73
, pp. 591-597
-
-
Opial, Z.1
-
23
-
-
0345903723
-
The round-off stability of iterations
-
A.M. Ostrowski (1967). The round-off stability of iterations. Z. Angew. Math. Mech. 47:77-81.
-
(1967)
Z. Angew. Math. Mech
, vol.47
, pp. 77-81
-
-
Ostrowski, A.M.1
-
25
-
-
0033148224
-
Convergence of generic infinite products of nonexpansive and uniformly continuous operators
-
S. Reich and A.J. Zaslavski (1999). Convergence of generic infinite products of nonexpansive and uniformly continuous operators. Nonlinear Anal. 36:1049-1065.
-
(1999)
Nonlinear Anal
, vol.36
, pp. 1049-1065
-
-
Reich, S.1
Zaslavski, A.J.2
-
26
-
-
33846033958
-
Generic convergence of infinite products of nonexpansive mappings in Banach and hyperbolic spaces
-
Optimization and Related Topics A. Rubinov and B. Glover, eds, Kluwer, Dordrecht, pp
-
S. Reich and A.J. Zaslavski (2001). Generic convergence of infinite products of nonexpansive mappings in Banach and hyperbolic spaces. In Optimization and Related Topics (A. Rubinov and B. Glover, eds.), Applied Optimization Series, Vol. 47. Kluwer, Dordrecht, pp. 371-402.
-
(2001)
Applied Optimization Series
, vol.47
, pp. 371-402
-
-
Reich, S.1
Zaslavski, A.J.2
-
27
-
-
0001363448
-
On rings of operators. Reduction Theory
-
J. Von Neumann (1949). On rings of operators. Reduction Theory. Ann. Math. 50:401-485.
-
(1949)
Ann. Math
, vol.50
, pp. 401-485
-
-
Von Neumann, J.1
|