메뉴 건너뛰기




Volumn , Issue , 2006, Pages 774-782

Quasi-Monte Carlo strategies for stochastic optimization

Author keywords

[No Author keywords available]

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; LEARNING ALGORITHMS; MONTE CARLO METHODS; OPTIMIZATION; STOCHASTIC PROGRAMMING;

EID: 46149113962     PISSN: 08917736     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WSC.2006.323158     Document Type: Conference Paper
Times cited : (24)

References (20)
  • 1
    • 0003008716 scopus 로고    scopus 로고
    • Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension
    • Caflisch, R. E., W. J. Morokoff, and A. B. Owen. 1997. Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension. Journal of Computational Finance 1:27-46.
    • (1997) Journal of Computational Finance , vol.1 , pp. 27-46
    • Caflisch, R.E.1    Morokoff, W.J.2    Owen, A.B.3
  • 4
    • 41149152141 scopus 로고    scopus 로고
    • Monte Carlo. Norwell, MA: Kluwer Academic Publishers
    • Fox, B. L. 2000. Strategies for quasi-Monte Carlo. Norwell, MA: Kluwer Academic Publishers.
    • (2000) Strategies for quasi
    • Fox, B.L.1
  • 5
    • 0003378660 scopus 로고    scopus 로고
    • Fast generation of randomized low-discrepancy point sets
    • Berlin: Springer. Software available at
    • Friedel, I., and A. Keller. 2002. Fast generation of randomized low-discrepancy point sets. In Monte Carlo and quasi-Monte Carlo methods, 2000 (Hong Kong), 257-273. Berlin: Springer. Software available at http://www.multires.caltech.edu/software/libseq/.
    • (2002) Monte Carlo and quasi-Monte Carlo methods, 2000 (Hong Kong) , pp. 257-273
    • Friedel, I.1    Keller, A.2
  • 6
    • 34547451434 scopus 로고    scopus 로고
    • On rates of convergence for stochastic optimization problems under non-i.i.d. sampling. Manuscript, available on Optimization Online
    • online.org
    • Homem-de-Mello, T. 2006. On rates of convergence for stochastic optimization problems under non-i.i.d. sampling. Manuscript, available on Optimization Online (www.optimization-online.org).
    • (2006)
    • Homem-de-Mello, T.1
  • 7
    • 34249830842 scopus 로고
    • Monte Carlo (importance) sampling within a Benders decomposition algorithm for stochastic linear programs
    • Infanger, G. 1992. Monte Carlo (importance) sampling within a Benders decomposition algorithm for stochastic linear programs. Annals of Operations Research 39:6995.
    • (1992) Annals of Operations Research , vol.39 , pp. 6995
    • Infanger, G.1
  • 8
    • 0031195390 scopus 로고    scopus 로고
    • An efficient sampling technique for off-line quality control
    • Kalagnanam, J., and U. Diwekar. 1997. An efficient sampling technique for off-line quality control. Technometrics 39 (3): 308-319.
    • (1997) Technometrics , vol.39 , Issue.3 , pp. 308-319
    • Kalagnanam, J.1    Diwekar, U.2
  • 9
    • 21644462379 scopus 로고    scopus 로고
    • Variance reduction in sample approximations of stochastic programs
    • Koivu, M. 2005. Variance reduction in sample approximations of stochastic programs. Mathematical Programming:463-485.
    • (2005) Mathematical Programming , pp. 463-485
    • Koivu, M.1
  • 10
    • 0002922737 scopus 로고    scopus 로고
    • Recent advances in randomized quasi-Monte Carlo methods
    • ed. M. Dror, P. L'Ecuyer, and F. Szidarovszky, Boston: Kluwer Academic Publishers
    • L'Ecuyer, P., and C. Lemieux. 2002. Recent advances in randomized quasi-Monte Carlo methods. In Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, ed. M. Dror, P. L'Ecuyer, and F. Szidarovszky, 419-474. Boston: Kluwer Academic Publishers.
    • (2002) Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications , pp. 419-474
    • L'Ecuyer, P.1    Lemieux, C.2
  • 11
    • 28044443065 scopus 로고    scopus 로고
    • The empirical behavior of sampling methods for stochastic programming
    • forthcoming
    • Linderoth, J. T., A. Shapiro, and S. J. Wright. 2005. The empirical behavior of sampling methods for stochastic programming. Annals of Operations Research, forthcoming.
    • (2005) Annals of Operations Research
    • Linderoth, J.T.1    Shapiro, A.2    Wright, S.J.3
  • 12
    • 0037319402 scopus 로고    scopus 로고
    • Implementing a decomposition algorithm for stochastic programming on a computational grid
    • Special Issue on Stochastic Programming
    • Linderoth, J. T., and S. J. Wright. 2003. Implementing a decomposition algorithm for stochastic programming on a computational grid. Computational Optimization and Applications 24:207-250. Special Issue on Stochastic Programming.
    • (2003) Computational Optimization and Applications , vol.24 , pp. 207-250
    • Linderoth, J.T.1    Wright, S.J.2
  • 13
    • 0009056943 scopus 로고
    • Optimal investments for electricity generation: A stochastic model and a test problem
    • ed. Y Ermoliev and R. J.-B. Wets, Berlin: Springer-Verlag
    • Louveaux, F., and Y Smeers. 1988. Optimal investments for electricity generation: A stochastic model and a test problem. In Numerical techniques for stochastic optimization problems, ed. Y Ermoliev and R. J.-B. Wets, 445-452. Berlin: Springer-Verlag.
    • (1988) Numerical techniques for stochastic optimization problems , pp. 445-452
    • Louveaux, F.1    Smeers, Y.2
  • 15
    • 0001491057 scopus 로고
    • Randomly permuted (î, m, s)-nets and (t, s)-sequences
    • Monte Carlo and quasi-Monte Carlo methods in scientific computing Las Vegas, NV, of, New York: Springer
    • Owen, A. B. 1995. Randomly permuted (î, m, s)-nets and (t, s)-sequences. In Monte Carlo and quasi-Monte Carlo methods in scientific computing (Las Vegas, NV, 1994), Volume 106 of Lecture Notes in Statist., 299-317. New York: Springer.
    • (1994) Lecture Notes in Statist , vol.106 , pp. 299-317
    • Owen, A.B.1
  • 18
    • 77950512601 scopus 로고    scopus 로고
    • Monte Carlo sampling methods
    • ed. A. Ruszczynski and A. Shapiro. Amsterdam, Netherlands: Elsevier Science Publishers B.V
    • Shapiro, A. 2003. Monte Carlo sampling methods. In Handbook of Stochastic Optimization, ed. A. Ruszczynski and A. Shapiro. Amsterdam, Netherlands: Elsevier Science Publishers B.V.
    • (2003) Handbook of Stochastic Optimization
    • Shapiro, A.1
  • 19
    • 0008078872 scopus 로고
    • Quasi-monte carlo methods for particle transport problems
    • ed. H. Niederreiter and P. Shiue, New York: Springer-Verlag
    • Spanier, J. 1995. Quasi-monte carlo methods for particle transport problems. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, ed. H. Niederreiter and P. Shiue, 121-148. New York: Springer-Verlag.
    • (1995) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , pp. 121-148
    • Spanier, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.