-
1
-
-
0002166247
-
-
Dover, New York, original work published in 1876
-
J.W. Gibbs, The Scientific Papers of J.W. Gibbs, Vol. 1, Dover, New York, 1961, original work published in 1876, 1878 p.55.
-
(1878)
The Scientific Papers of J.W. Gibbs
, vol.1
, pp. 55
-
-
Gibbs, J.W.1
-
2
-
-
46149089117
-
-
Ref, 1, p.56
-
Ref. [1], p.56.
-
-
-
-
3
-
-
46149090748
-
-
When Gibbs considered variations in the amount of a component, he expressed them as variations in the mass rather than in the number of moles
-
When Gibbs considered variations in the amount of a component, he expressed them as variations in the mass rather than in the number of moles.
-
-
-
-
4
-
-
46149109414
-
-
Ref, 1, p.222
-
Ref. [1], p.222.
-
-
-
-
5
-
-
46149085333
-
-
Ref, 1, p.193
-
Ref. [1], p.193.
-
-
-
-
11
-
-
0004180277
-
-
Cambridge University Press, Cambridge
-
C.J. Adkins, Equilibrium Thermodynamics, Cambridge University Press, Cambridge, 1983, p.106.
-
(1983)
Equilibrium Thermodynamics
, pp. 106
-
-
Adkins, C.J.1
-
13
-
-
46149114084
-
-
Dover, New York, original work published in 1873, p
-
J.W. Gibbs, The Scientific Papers of J.W. Gibbs, Vol. 1, Dover, New York, 1961, original work published in 1873, p.40.
-
(1961)
The Scientific Papers of J.W. Gibbs
, vol.1
, pp. 40
-
-
Gibbs, J.W.1
-
14
-
-
46149123153
-
-
Ref, 1, p.109
-
Ref. [1], p.109.
-
-
-
-
15
-
-
46149108050
-
-
Ref, 1, p.221
-
Ref. [1], p.221.
-
-
-
-
17
-
-
46149084363
-
-
Ref, 1, p.219
-
Ref. [1], p.219.
-
-
-
-
18
-
-
46149107220
-
-
Ref, 1, p.225
-
Ref. [1], p.225.
-
-
-
-
19
-
-
46149092690
-
-
H. Ehrenreich and F. Spaepen, eds, Elsevier, Amsterdam
-
P.W. Voorhees and W.C. Johnson, in Solid State Physics, Vol. 59, H. Ehrenreich and F. Spaepen, eds., Elsevier, Amsterdam, 2004, p.2.
-
(2004)
Solid State Physics
, vol.59
, pp. 2
-
-
Voorhees, P.W.1
Johnson, W.C.2
-
22
-
-
0003533533
-
-
R. Gomer and C.S. Smith, eds, University of Chicago, Chicago
-
C. Herring, in Structure and Properties of Solid Surfaces, R. Gomer and C.S. Smith, eds., University of Chicago, Chicago, 1953.
-
(1953)
Structure and Properties of Solid Surfaces
-
-
Herring, C.1
-
23
-
-
0003838646
-
-
American Society for Metals, Metals Park, OH
-
W.W. Mullins, Metal Surfaces Structure, Energetics and Kinetics, American Society for Metals, Metals Park, OH, 1963, p.17.
-
(1963)
Metal Surfaces Structure, Energetics and Kinetics
, pp. 17
-
-
Mullins, W.W.1
-
24
-
-
0004261478
-
-
W.C. Johnson and J.M. Blakely, eds, American Society for Metals, Metals Park, OH
-
J.W. Cahn, in Interfacial Segregation, W.C. Johnson and J.M. Blakely, eds., American Society for Metals, Metals Park, OH, 1979.
-
(1979)
Interfacial Segregation
-
-
Cahn, J.W.1
-
30
-
-
46149120497
-
-
Ref, 1, p.229
-
Ref. [1], p.229.
-
-
-
-
31
-
-
46149112936
-
-
Ref, 1, p.314
-
Ref. [1], p.314.
-
-
-
-
32
-
-
46149094328
-
-
Ref, 1, p.317
-
Ref. [1], p.317.
-
-
-
-
33
-
-
46149098593
-
-
M. Hillert, quoted in ref. [6].
-
M. Hillert, quoted in ref. [6].
-
-
-
-
34
-
-
46149125200
-
-
j=0 if j is not an actual component of α.
-
j=0 if j is not an actual component of α.
-
-
-
-
35
-
-
46149126570
-
-
If the surface crystal plane of the solid before dissolution has a relatively small atom fraction of components that are not actual components of the α, then atoms of these components will remain on the newly created surface, and a small mole fraction of atoms that were originally in the crystal plane adjacent to the surface plane that can be Gibbs-reversibly varied will be dissolved in order to make the total number of dissolved atoms equal to the number of lattice sites in the original surface crystal layer
-
If the surface crystal plane of the solid before dissolution has a relatively small atom fraction of components that are not actual components of the α, then atoms of these components will remain on the newly created surface, and a small mole fraction of atoms that were originally in the crystal plane adjacent to the surface plane that can be Gibbs-reversibly varied will be dissolved in order to make the total number of dissolved atoms equal to the number of lattice sites in the original surface crystal layer.
-
-
-
-
38
-
-
46149111617
-
-
For a general anisotropic surface, defining the two-dimensional infinitesimal surface strain dεij in the standard way, the surface stress tensor fij can be defined by setting the reversible work to introduce a surface strain dεij as Afij dεij, dZs, so that fij, 1/A (∂Zs/∂ε ij)εkl≠ij The surface stress can be related to the open system surface availability σ by noting that for fixed nsi, dZs, dBs, d(σA) and that dA, Aδijdε ij, where δij is the Kronecker delta, so that fij =1/A (∂(σ A, ∂εij)εkl≠ij,nsi, σ
-
i.
-
-
-
-
39
-
-
46149113635
-
-
Ref, 1, p. 254
-
Ref. [1], p. 254.
-
-
-
-
42
-
-
46149117429
-
-
Ref, 1, p.88
-
Ref. [1], p.88.
-
-
-
-
43
-
-
46149127497
-
-
Ref, 12, p.215
-
Ref. [12], p.215.
-
-
-
|