-
1
-
-
40549112303
-
Application of homotopy perturbation method to Zakharov-Kuznetsov equation
-
In Press
-
Barari A., A.J. Choobbasti and D.D. Ganji, 2008. Application of homotopy perturbation method to Zakharov-Kuznetsov equation. J. Phys. (In Press).
-
(2008)
J. Phys
-
-
Barari, A.1
Choobbasti, A.J.2
Ganji, D.D.3
-
2
-
-
0018320891
-
Finite difference methods for two-point boundary-value problem's involving a higher order differential equations
-
Chawla, M.M. and C.P. Katti, 1979. Finite difference methods for two-point boundary-value problem's involving a higher order differential equations. BIT., 19(1): 27-33.
-
(1979)
BIT
, vol.19
, Issue.1
, pp. 27-33
-
-
Chawla, M.M.1
Katti, C.P.2
-
3
-
-
46149119315
-
Application of homotopy perturbation method for solving second order nonlinear wave equation
-
In Press
-
Choobbasti, A.J., A. Barari and D.D. Ganji, 2008. Application of homotopy perturbation method for solving second order nonlinear wave equation J. Phys. (In Press).
-
(2008)
J. Phys
-
-
Choobbasti, A.J.1
Barari, A.2
Ganji, D.D.3
-
4
-
-
33748919061
-
Application of He's homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations
-
Ganji, D.D. and A. Sadighi, 2006. Application of He's homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations. Int. J. Nonl. Sci. Num. Simu., 7(4): 411-418.
-
(2006)
Int. J. Nonl. Sci. Num. Simu
, vol.7
, Issue.4
, pp. 411-418
-
-
Ganji, D.D.1
Sadighi, A.2
-
5
-
-
0032672778
-
Homotopy perturbation technique
-
He, J.H., 1999a. Homotopy perturbation technique. Comput. Meth. Applied Mech. Eng., 178 (3-4): 257-262.
-
(1999)
Comput. Meth. Applied Mech. Eng
, vol.178
, Issue.3-4
, pp. 257-262
-
-
He, J.H.1
-
6
-
-
0000092673
-
Variational iteration method-a kind of non-linear analytical technique: Some Examples
-
He, J.H., 1999b. Variational iteration method-a kind of non-linear analytical technique: Some Examples. Int. J. Nonl. Mech., 34 (4): 699-708.
-
(1999)
Int. J. Nonl. Mech
, vol.34
, Issue.4
, pp. 699-708
-
-
He, J.H.1
-
7
-
-
0033702384
-
A coupling method of a homotopy technique and a perturbation technique for nonlinear problems
-
He, J.H., 2000. A coupling method of a homotopy technique and a perturbation technique for nonlinear problems. Int. J. Nonl. Mech., 35 (1): 37-43.
-
(2000)
Int. J. Nonl. Mech
, vol.35
, Issue.1
, pp. 37-43
-
-
He, J.H.1
-
8
-
-
0037440579
-
Homotopy perturbation method: A new nonlinear analytical technique
-
He, J.H., 2003. Homotopy perturbation method: A new nonlinear analytical technique. Applied Math. Comput., 135 (1): 73-79.
-
(2003)
Applied Math. Comput
, vol.135
, Issue.1
, pp. 73-79
-
-
He, J.H.1
-
9
-
-
30344475545
-
Construction of solitary solution and compacton-like solution by variational iteration method
-
He, J.H. and X.H. Wu, 2006. Construction of solitary solution and compacton-like solution by variational iteration method. Chaos. Soliton. Fract., 29 (1): 108-113.
-
(2006)
Chaos. Soliton. Fract
, vol.29
, Issue.1
, pp. 108-113
-
-
He, J.H.1
Wu, X.H.2
-
10
-
-
4944235284
-
Iterative Solution for a beam equation with nonlinear boundary conditions of third order
-
Ma, T.F. and J. Silva, 2004. Iterative Solution for a beam equation with nonlinear boundary conditions of third order. Applied Math. Comput, 159 (1): 11-18.
-
(2004)
Applied Math. Comput
, vol.159
, Issue.1
, pp. 11-18
-
-
Ma, T.F.1
Silva, J.2
-
12
-
-
24944474278
-
Application of He's variational iteration method to Helmholtz Equation
-
Momani, S.M. and S. Abuasad, 2006. Application of He's variational iteration method to Helmholtz Equation. Chaos. Soliton. Fract., 27 (5): 1119-1123.
-
(2006)
Chaos. Soliton. Fract
, vol.27
, Issue.5
, pp. 1119-1123
-
-
Momani, S.M.1
Abuasad, S.2
-
13
-
-
30344464250
-
Application of variational iteration method to nonlinear differential equations of fractional order
-
Odibat, Z. and S. Momani, 2006. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonl. Sci. Num. Simu., 7 (1): 27-34.
-
(2006)
Int. J. Nonl. Sci. Num. Simu
, vol.7
, Issue.1
, pp. 27-34
-
-
Odibat, Z.1
Momani, S.2
-
14
-
-
33745965279
-
Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy-perturbation method
-
Rafei, M. and D.D. Ganji, 2006. Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy-perturbation method. Int. J. Nonl. Sci. Num. Simu., 7 (3): 321-328.
-
(2006)
Int. J. Nonl. Sci. Num. Simu
, vol.7
, Issue.3
, pp. 321-328
-
-
Rafei, M.1
Ganji, D.D.2
-
15
-
-
34249893388
-
Approximate solutions of K (2.2), KdV and modified KdV equations by variational iteration method, homotopy perturbation method and homotopy analysis method
-
Tari, H., D.D. Ganji and M. Rostamian, 2007. Approximate solutions of K (2.2), KdV and modified KdV equations by variational iteration method, homotopy perturbation method and homotopy analysis method. Int J. Nonl. Sci. Num. Simu., 8 (2): 203-210.
-
(2007)
Int J. Nonl. Sci. Num. Simu
, vol.8
, Issue.2
, pp. 203-210
-
-
Tari, H.1
Ganji, D.D.2
Rostamian, M.3
-
16
-
-
33751528556
-
-
Zhang, L. and N.J.H. He, 2006. Homotopy perturbation method for the solution of the electrostatic potential differential equation. Math. Prob. Eng. Art. No. 83878.
-
Zhang, L. and N.J.H. He, 2006. Homotopy perturbation method for the solution of the electrostatic potential differential equation. Math. Prob. Eng. Art. No. 83878.
-
-
-
|