-
1
-
-
0016717761
-
Metal chelate affinity chromatography, a new approach to protein fractionation
-
Porath, J., Carlsson, J., Olsson, I., Belfrage, G., Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 1975, 258, 598-599.
-
(1975)
Nature
, vol.258
, pp. 598-599
-
-
Porath, J.1
Carlsson, J.2
Olsson, I.3
Belfrage, G.4
-
2
-
-
19444373996
-
Making the most of aYnity tags
-
Waugh, D. S., Making the most of aYnity tags. Trends Biotechnol. 2005, 23, 316-320.
-
(2005)
Trends Biotechnol
, vol.23
, pp. 316-320
-
-
Waugh, D.S.1
-
3
-
-
0035975882
-
Twenty-five years of immobilized metal ion affinity chromatography: Past, present and future
-
Chaga, G. S., Twenty-five years of immobilized metal ion affinity chromatography: Past, present and future. J. Biochem. Biophys. Meth. 2001, 49, 313-334.
-
(2001)
J. Biochem. Biophys. Meth
, vol.49
, pp. 313-334
-
-
Chaga, G.S.1
-
4
-
-
0035975923
-
Perspectives of immobilized-metal affinity chromatography
-
Gaberc-Porekar, V., Menart, V., Perspectives of immobilized-metal affinity chromatography. J. Biochem. Biophys. Meth. 2001, 49, 335-360.
-
(2001)
J. Biochem. Biophys. Meth
, vol.49
, pp. 335-360
-
-
Gaberc-Porekar, V.1
Menart, V.2
-
5
-
-
1542400416
-
Immobilized metal ion affinity chromatography of proteins
-
Zachariou, M., Immobilized metal ion affinity chromatography of proteins. Methods Mol. Biol. 2004, 251, 89-102.
-
(2004)
Methods Mol. Biol
, vol.251
, pp. 89-102
-
-
Zachariou, M.1
-
6
-
-
0033565503
-
Immobilized gallium (III) affinity chromatography of phosphopeptides
-
Posewitz, M. C., Tempst, P., Immobilized gallium (III) affinity chromatography of phosphopeptides. Anal. Chem. 1999, 71, 2883-2892.
-
(1999)
Anal. Chem
, vol.71
, pp. 2883-2892
-
-
Posewitz, M.C.1
Tempst, P.2
-
7
-
-
23044450523
-
Screening of peptide affinity tags using immobilised metal affinity chromatography in 96-well plate format
-
Hanora, A., Bernaudat, F., Plieva, F. M., Dainiak, M. B. et al., Screening of peptide affinity tags using immobilised metal affinity chromatography in 96-well plate format. J. Chromatogr. A 2005, 1087, 38-44.
-
(2005)
J. Chromatogr. A
, vol.1087
, pp. 38-44
-
-
Hanora, A.1
Bernaudat, F.2
Plieva, F.M.3
Dainiak, M.B.4
-
8
-
-
0023659137
-
New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues
-
Hochuli, E., Dobeli, H., Schacher, A., New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J. Chromatogr. 1987, 411, 177-184.
-
(1987)
J. Chromatogr
, vol.411
, pp. 177-184
-
-
Hochuli, E.1
Dobeli, H.2
Schacher, A.3
-
9
-
-
0024296676
-
Chelating peptide immobilized metal ion affinity chromatography. A new concept in affinity chromatography for recombinant proteins
-
Smith, M. C., Furman, T. C., Ingolia, T. D., Pidgeon, C., Chelating peptide immobilized metal ion affinity chromatography. A new concept in affinity chromatography for recombinant proteins. J. Biol. Chem. 1988, 263, 7211-7215.
-
(1988)
J. Biol. Chem
, vol.263
, pp. 7211-7215
-
-
Smith, M.C.1
Furman, T.C.2
Ingolia, T.D.3
Pidgeon, C.4
-
10
-
-
0842288662
-
Membrane protein expression and production: Effects of polyhistidine tag length and position
-
Mohanty, A. K., Wiener, M. C., Membrane protein expression and production: Effects of polyhistidine tag length and position. Protein Expres. Purif. 2004, 33, 311-325.
-
(2004)
Protein Expres. Purif
, vol.33
, pp. 311-325
-
-
Mohanty, A.K.1
Wiener, M.C.2
-
11
-
-
0032831506
-
Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure-retention relationships
-
Kaliszan, R., Straten, M. A. v., Markuszewski, M., Cramers, C. A., Claessens, H. A., Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure-retention relationships. J. Chromatogr. A 1999, 855, 455-486.
-
(1999)
J. Chromatogr. A
, vol.855
, pp. 455-486
-
-
Kaliszan, R.1
Straten, M.A.V.2
Markuszewski, M.3
Cramers, C.A.4
Claessens, H.A.5
-
12
-
-
26244446816
-
Artificial neural network prediction of retention factors of some benzene derivatives and heterocyclic compounds in micellar electrokinetic chromatography
-
Golmohammadi, H., Fatemi, M. H., Artificial neural network prediction of retention factors of some benzene derivatives and heterocyclic compounds in micellar electrokinetic chromatography. Electrophoresis 2005, 26, 3438-3444.
-
(2005)
Electrophoresis
, vol.26
, pp. 3438-3444
-
-
Golmohammadi, H.1
Fatemi, M.H.2
-
13
-
-
33751208935
-
Application to 300- and 100-Å pore size C18 sorbents
-
Sequence-specific retention calculator algorithm for peptide retention prediction in ion-pair RP-HPLC
-
Krokhin, O. V., Sequence-specific retention calculator algorithm for peptide retention prediction in ion-pair RP-HPLC: Application to 300- and 100-Å pore size C18 sorbents. Anal. Chem. 2006, 78, 7785-7795.
-
(2006)
Anal. Chem
, vol.78
, pp. 7785-7795
-
-
Krokhin, O.V.1
-
14
-
-
11144254373
-
Toward multidimensional proteome analysis
-
Reversed-Phase HPLC separation of human serum employing a novel saw-tooth gradient
-
Morris, D. L. Jr., Sutton, J. N., Harper, R. G., Timperman, A. T., Reversed-Phase HPLC separation of human serum employing a novel saw-tooth gradient: Toward multidimensional proteome analysis. J. Proteome Res. 2004, 3, 1149-1154.
-
(2004)
J. Proteome Res
, vol.3
, pp. 1149-1154
-
-
Morris Jr., D.L.1
Sutton, J.N.2
Harper, R.G.3
Timperman, A.T.4
-
15
-
-
17444419756
-
Prediction of peptide retention at different HPLC conditions from multiple linear regression models
-
Baczek, T., Wiczling, P., Marsza, M., Heyden, Y. V., Kaliszan, R., Prediction of peptide retention at different HPLC conditions from multiple linear regression models. J. Proteome Res. 2005, 4, 555-563.
-
(2005)
J. Proteome Res
, vol.4
, pp. 555-563
-
-
Baczek, T.1
Wiczling, P.2
Marsza, M.3
Heyden, Y.V.4
Kaliszan, R.5
-
16
-
-
2942577596
-
Artificial neural network analysis for evaluation of peptide MS/MS spectra in proteomics
-
Baczek, T., Bucinski, A., Ivanov, A. R., Kaliszan, R., Artificial neural network analysis for evaluation of peptide MS/MS spectra in proteomics. Anal. Chem. 2004, 76, 1726-1732.
-
(2004)
Anal. Chem
, vol.76
, pp. 1726-1732
-
-
Baczek, T.1
Bucinski, A.2
Ivanov, A.R.3
Kaliszan, R.4
-
17
-
-
13844307725
-
Prediction of high-performance liquid chromatography retention of peptides with the use of quantitative structure-retention relationships
-
Kaliszan, R., Baczek, T., Cimochowska, A., Juszczyk, P. et al., Prediction of high-performance liquid chromatography retention of peptides with the use of quantitative structure-retention relationships. Proteomics 2005, 5, 409-415.
-
(2005)
Proteomics
, vol.5
, pp. 409-415
-
-
Kaliszan, R.1
Baczek, T.2
Cimochowska, A.3
Juszczyk, P.4
-
18
-
-
40649126964
-
Informatics for peptide retention properties in proteomic LC-MS
-
Shinoda, K., Sugimoto, M., Tomita, M., Ishihama, Y., Informatics for peptide retention properties in proteomic LC-MS. Proteomics 2008, 8, 787-798.
-
(2008)
Proteomics
, vol.8
, pp. 787-798
-
-
Shinoda, K.1
Sugimoto, M.2
Tomita, M.3
Ishihama, Y.4
-
19
-
-
0025811052
-
Minimum analogue peptide sets (MAPS) for quantitative structure-activity relationships
-
Hellberg, S., Eriksson, L., Jonsson, J., Lindgren, F. et al., Minimum analogue peptide sets (MAPS) for quantitative structure-activity relationships. Int. J. Pept. Protein Res. 1991, 37, 414-424.
-
(1991)
Int. J. Pept. Protein Res
, vol.37
, pp. 414-424
-
-
Hellberg, S.1
Eriksson, L.2
Jonsson, J.3
Lindgren, F.4
-
20
-
-
34249723139
-
The evaluation of two-step multivariate adaptive regression splines for chromatographic retention prediction of peptides
-
Put, R., Heyden, Y. V., The evaluation of two-step multivariate adaptive regression splines for chromatographic retention prediction of peptides. Proteomics 2007, 7, 1664-1677.
-
(2007)
Proteomics
, vol.7
, pp. 1664-1677
-
-
Put, R.1
Heyden, Y.V.2
-
21
-
-
34347366084
-
Using support vector machine regression to model the retention of peptides in immobilized metal-affinity chromatography
-
Kermani, B. G., Kozlov, I., Melnyk, P., Zhao, C. et al., Using support vector machine regression to model the retention of peptides in immobilized metal-affinity chromatography. Sens. Actuators B Chem. 2007, 125, 149-157.
-
(2007)
Sens. Actuators B Chem
, vol.125
, pp. 149-157
-
-
Kermani, B.G.1
Kozlov, I.2
Melnyk, P.3
Zhao, C.4
-
22
-
-
84894887900
-
Computer aided design of experiments
-
Kennard, R. W., Stone, L. A., Computer aided design of experiments. Technometrics 1969, 11, 137-148.
-
(1969)
Technometrics
, vol.11
, pp. 137-148
-
-
Kennard, R.W.1
Stone, L.A.2
-
23
-
-
0004300252
-
-
University of Florida, Gainesville, Florida
-
Katritzky, A. R., Lobanov, V. S., Karelson, M., CODESSA Version 2.0 Reference Manual. University of Florida, Gainesville, Florida, 1995-1997.
-
(1995)
CODESSA Version 2.0 Reference Manual
-
-
Katritzky, A.R.1
Lobanov, V.S.2
Karelson, M.3
-
24
-
-
0001321370
-
The correlation and quantitative prediction of chemical and physical properties from structure
-
QSPR
-
Katritzky, A. R., Lobanov, V. S., Karelson, M., QSPR: The correlation and quantitative prediction of chemical and physical properties from structure. Chem. Soc. Rev. 1995, 24, 279-287.
-
(1995)
Chem. Soc. Rev
, vol.24
, pp. 279-287
-
-
Katritzky, A.R.1
Lobanov, V.S.2
Karelson, M.3
-
25
-
-
0003430849
-
-
University of Florida, Gainesville, Florida
-
Katritzky, A. R., Lobanov, V. S., Karelson, M., CODESSA: Training Manual. University of Florida, Gainesville, Florida 1995.
-
(1995)
CODESSA: Training Manual
-
-
Katritzky, A.R.1
Lobanov, V.S.2
Karelson, M.3
-
26
-
-
84950941772
-
Projection pursuit regression
-
Friedman, J. H., Stuetzle, W., Projection pursuit regression. J. Am. Stat. Assoc. 1981, 76, 817-823.
-
(1981)
J. Am. Stat. Assoc
, vol.76
, pp. 817-823
-
-
Friedman, J.H.1
Stuetzle, W.2
-
27
-
-
0000263797
-
Projection pursuit (with discussion)
-
Huber, P. J., Projection pursuit (with discussion). Ann. Statist. 1985, 13, 435-475.
-
(1985)
Ann. Statist
, vol.13
, pp. 435-475
-
-
Huber, P.J.1
-
28
-
-
0001775806
-
On nonlinear functions of linear combinations
-
Diaconis, P., Shahshahani, M., On nonlinear functions of linear combinations. SIAM J. Sci. Statist. Comput. 1984, 5, 175-191.
-
(1984)
SIAM J. Sci. Statist. Comput
, vol.5
, pp. 175-191
-
-
Diaconis, P.1
Shahshahani, M.2
-
29
-
-
0036864320
-
Data mining for seeking an accurate quantitative relationship between molecular structure and GC retention indices of alkenes by projection pursuit
-
Du, Y. P., Liang, Y. Z., Yun, D., Data mining for seeking an accurate quantitative relationship between molecular structure and GC retention indices of alkenes by projection pursuit. J. Chem. Inf. Comput. Sci. 2002, 42, 1283-1292.
-
(2002)
J. Chem. Inf. Comput. Sci
, vol.42
, pp. 1283-1292
-
-
Du, Y.P.1
Liang, Y.Z.2
Yun, D.3
-
30
-
-
33845926349
-
Prediction of gas-phase reduced ion mobility constants (K0) based on the multiple linear regression and projection pursuit regression
-
Liu, H. X., Yao, X. J., Liu, M. C., Hu, Z. D., Fan, B. T., Prediction of gas-phase reduced ion mobility constants (K0) based on the multiple linear regression and projection pursuit regression. Talanta 2007, 71, 258-263.
-
(2007)
Talanta
, vol.71
, pp. 258-263
-
-
Liu, H.X.1
Yao, X.J.2
Liu, M.C.3
Hu, Z.D.4
Fan, B.T.5
-
31
-
-
0038724207
-
The importance of being earnest validation is the absolute essential for successful application and interpretation of QSPR models
-
Tropsha, A., Gramatica, P., Gombar, V. K., The importance of being earnest validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci. 2003, 22, 69-77.
-
(2003)
QSAR Comb. Sci
, vol.22
, pp. 69-77
-
-
Tropsha, A.1
Gramatica, P.2
Gombar, V.K.3
-
32
-
-
0002676017
-
Lazy learning: Special issue editorial
-
Aha, D. W., Lazy learning: Special issue editorial. Artif. Intell. Rev. 1997, 11, 7-10.
-
(1997)
Artif. Intell. Rev
, vol.11
, pp. 7-10
-
-
Aha, D.W.1
-
33
-
-
0031074521
-
Locally weighted learning
-
Atkeson, C. G., Moore, A. W., Schaal, S., Locally weighted learning. Artif. Intell. Rev. 1997, 11, 11-73.
-
(1997)
Artif. Intell. Rev
, vol.11
, pp. 11-73
-
-
Atkeson, C.G.1
Moore, A.W.2
Schaal, S.3
-
34
-
-
45549110576
-
Regression by local fitting: Methods, properties and computational algorithms
-
Cleveland, W. S., Devlin, S. J., Grosse, S. J., Regression by local fitting: Methods, properties and computational algorithms. J. Econometrics 1988, 37, 87-114.
-
(1988)
J. Econometrics
, vol.37
, pp. 87-114
-
-
Cleveland, W.S.1
Devlin, S.J.2
Grosse, S.J.3
-
35
-
-
46049098097
-
-
Birattari, M., Bontempi, G., Bersini, H., Lazy learning meets the recursive least squares algorithm, Proceedings of the 1998 conference on Advances in neutral information processing systems II, Adv. Neural Inf. Process. Syst. 1999, 11, 375.
-
Birattari, M., Bontempi, G., Bersini, H., Lazy learning meets the recursive least squares algorithm, Proceedings of the 1998 conference on Advances in neutral information processing systems II, Adv. Neural Inf. Process. Syst. 1999, 11, 375.
-
-
-
-
36
-
-
0032625723
-
Lazy learning for modeling and control design
-
Bontempi, G., Birattari, M., Bersini, H., Lazy learning for modeling and control design. Int. J. Control 1999, 72, 643-658.
-
(1999)
Int. J. Control
, vol.72
, pp. 643-658
-
-
Bontempi, G.1
Birattari, M.2
Bersini, H.3
-
37
-
-
33750321978
-
A novel automated lazy learning QSAR (ALL-QSAR) approach: Method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models
-
Zhang, S. X., Golbraikh, A., Oloff, S., Kohn, H., Tropsha, A., A novel automated lazy learning QSAR (ALL-QSAR) approach: Method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models. J. Chem. Inf. Model. 2006, 46, 1984-1995.
-
(2006)
J. Chem. Inf. Model
, vol.46
, pp. 1984-1995
-
-
Zhang, S.X.1
Golbraikh, A.2
Oloff, S.3
Kohn, H.4
Tropsha, A.5
-
38
-
-
33746928751
-
Local lazy regression: Making use of the neighborhood to improve QSAR predictions
-
Guha, R., Dutta, D., Jurs, P. C., Chen, T., Local lazy regression: Making use of the neighborhood to improve QSAR predictions. J. Chem. Inf. Model. 2006, 46, 1836-1847.
-
(2006)
J. Chem. Inf. Model
, vol.46
, pp. 1836-1847
-
-
Guha, R.1
Dutta, D.2
Jurs, P.C.3
Chen, T.4
-
39
-
-
33847110311
-
Lazy learning-based online identification and adaptive PID control: A case study for CSTR process
-
Pan, T. H., Li, S. Y., Cai, W. J., Lazy learning-based online identification and adaptive PID control: A case study for CSTR process. Ind. Eng. Chem. Res. 2007, 46, 472-480.
-
(2007)
Ind. Eng. Chem. Res
, vol.46
, pp. 472-480
-
-
Pan, T.H.1
Li, S.Y.2
Cai, W.J.3
-
40
-
-
46049088065
-
-
Venables, W. N., Smith, D. M., the R Development Core Team, An Introduction to R, Network Theory Ltd., 2004.
-
Venables, W. N., Smith, D. M., the R Development Core Team, An Introduction to R, Network Theory Ltd., 2004.
-
-
-
-
42
-
-
0000356254
-
Scheme for the calculation of the electronegativities of atoms in a molecule in the framework of sanderson's principle
-
Zefirov, N. S., Kirpichenok, M. A., Izmailov, F. F., Trofimov, M. I., Scheme for the calculation of the electronegativities of atoms in a molecule in the framework of sanderson's principle. Dokl. Akad. Nauk SSSR 1987, 296, 883-887.
-
(1987)
Dokl. Akad. Nauk SSSR
, vol.296
, pp. 883-887
-
-
Zefirov, N.S.1
Kirpichenok, M.A.2
Izmailov, F.F.3
Trofimov, M.I.4
|