-
1
-
-
0002265622
-
Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie" ("General solution of the static body problem in Einstein's gravitation theory")
-
A. Gullstrand, "Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie" ("General solution of the static body problem in Einstein's gravitation theory")," Ark. Mat., Astron. Fys. 16(8), 1-15 (1922).
-
(1922)
Ark. Mat., Astron. Fys
, vol.16
, Issue.8
, pp. 1-15
-
-
Gullstrand, A.1
-
2
-
-
0001192670
-
La mécanique classique et la théorie de la relativité
-
P. Painlevé, "La mécanique classique et la théorie de la relativité," C.R. Acad. Sci. (Paris) 173, 677-680 (1921).
-
(1921)
C.R. Acad. Sci. (Paris)
, vol.173
, pp. 677-680
-
-
Painlevé, P.1
-
3
-
-
45549086366
-
-
K. Schwarzschild, Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsberichte der Deutschen Akademie der Wissencshaften zu Berlin, Klasse für Mathematik, Physik, und Technik 1, 189-196 (1916). For an English translation see On the gravitational field of a mass point according to Einstein's theory, Gen. Relativ. Gravit. 35, 951-959 (2003).
-
K. Schwarzschild, "Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie," Sitzungsberichte der Deutschen Akademie der Wissencshaften zu Berlin, Klasse für Mathematik, Physik, und Technik 1, 189-196 (1916). For an English translation see "On the gravitational field of a mass point according to Einstein's theory," Gen. Relativ. Gravit. 35, 951-959 (2003).
-
-
-
-
4
-
-
0141564671
-
-
T. Rothman, Editor's note: The field of a single centre in Einstein's theory of gravitation, and the motion of a particle in that field, Gen. Relativ. Gravit. 34, 1541-1543 (2002) comments that the Schwarzschild metric was discovered independently by Johannes Droste in 1916.
-
T. Rothman, "Editor's note: The field of a single centre in Einstein's theory of gravitation, and the motion of a particle in that field," Gen. Relativ. Gravit. 34, 1541-1543 (2002) comments that the Schwarzschild metric was discovered independently by Johannes Droste in 1916.
-
-
-
-
5
-
-
4544331202
-
Cosmic problems for condensed matter experiment
-
Tanmay Vachaspati, "Cosmic problems for condensed matter experiment," J. Low Temp. Phys. 136, 361-377 (2004).
-
(2004)
J. Low Temp. Phys
, vol.136
, pp. 361-377
-
-
Vachaspati, T.1
-
6
-
-
0009372731
-
On the means of discovering the distance, magnitude, etc., of the fixed stars, in consequence of the diminution of their light, in case such a diminution should be found to take place in any of the them, and such other data should be procured from observations, as would be futher necessary for that purpose
-
Trans. R. Soc. London
-
J. Michell, "On the means of discovering the distance, magnitude, etc., of the fixed stars, in consequence of the diminution of their light, in case such a diminution should be found to take place in any of the them, and such other data should be procured from observations, as would be futher necessary for that purpose," Philos. Trans. R. Soc. London 74, 35-57 (1784).
-
(1784)
Philos
, vol.74
, pp. 35-57
-
-
Michell, J.1
-
7
-
-
45549102131
-
-
P.-S. Laplace, Proof of the theorem, that the attractive force of a heavenly body could be so large, that light could not flow out of it, in Allgemeine Geographische Ephemeriden, verfasset von Einer Gesellschaft Gelehrten, 8vo Weimer, IV, I. Bd St, edited by F. X. von Zach (1799); An English translation is in Stephen W. Hawking and George F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973), Appendix A.
-
P.-S. Laplace, "Proof of the theorem, that the attractive force of a heavenly body could be so large, that light could not flow out of it," in Allgemeine Geographische Ephemeriden, verfasset von Einer Gesellschaft Gelehrten, 8vo Weimer, IV, I. Bd St, edited by F. X. von Zach (1799); An English translation is in Stephen W. Hawking and George F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973), Appendix A.
-
-
-
-
8
-
-
14944345546
-
-
A. A. Knopf, New York
-
B. Greene, The Fabric of the Cosmos: Space, Time, and the Texture of Reality (A. A. Knopf, New York, 2004), p. 237.
-
(2004)
The Fabric of the Cosmos: Space, Time, and the Texture of Reality
, pp. 237
-
-
Greene, B.1
-
9
-
-
0032375453
-
Acoustic black holes: Horizons, ergospheres, and Hawking radiation
-
M. Visser, "Acoustic black holes: Horizons, ergospheres, and Hawking radiation," Class. Quantum Grav. 15, 1767-1791 (1998).
-
(1998)
Class. Quantum Grav
, vol.15
, pp. 1767-1791
-
-
Visser, M.1
-
10
-
-
32644439812
-
Heuristic approach to the Schwarzschild geometry
-
M. Visser, "Heuristic approach to the Schwarzschild geometry," Int. J. Mod. Phys. D 14, 2051-2068 (2005).
-
(2005)
Int. J. Mod. Phys. D
, vol.14
, pp. 2051-2068
-
-
Visser, M.1
-
11
-
-
23044526438
-
Regular coordinate systems for Schwarzschild and other spherical spacetimes
-
K. Martel and E. Poisson, "Regular coordinate systems for Schwarzschild and other spherical spacetimes," Am. J. Phys. 69, 476-480 (2001).
-
(2001)
Am. J. Phys
, vol.69
, pp. 476-480
-
-
Martel, K.1
Poisson, E.2
-
12
-
-
29144499677
-
-
W. Laschkarew, Zure Theorie der Gravitation, Z. Phys. 35, 473-476 (1926). A translation by babelfish.altavista.com/tr of the abstract is The Einstein equivalence principle can be satisfied from the point of view of an aether theory, if one permits accelerated aether currents. All consequences of the Einstein theory of gravitation are derived in an elementary way by connection of the theory of special relativity with the above hypothesis.
-
W. Laschkarew, "Zure Theorie der Gravitation," Z. Phys. 35, 473-476 (1926). A translation by babelfish.altavista.com/tr of the abstract is "The Einstein equivalence principle can be satisfied from the point of view of an aether theory, if one permits accelerated aether currents. All consequences of the Einstein theory of gravitation are derived in an elementary way by connection of the theory of special relativity with the above hypothesis."
-
-
-
-
13
-
-
0001911737
-
L'univers en expansion
-
Ann. Soc. Sci, Bruxelles A
-
G. Lemaître, "L'univers en expansion," Ann. Soc. Sci. (Bruxelles) A 53, 51-85 (1933).
-
(1933)
, vol.53
, pp. 51-85
-
-
Lemaître, G.1
-
14
-
-
0002736979
-
Comparison of Newtonian and relativistic theories of space-time
-
edited by B. Hoffmann Indiana University Press, Bloomington
-
A. Trautman, "Comparison of Newtonian and relativistic theories of space-time," in Perspectives in Geometry and Relativity; Essays in Honor of Václav Hlavatý, edited by B. Hoffmann (Indiana University Press, Bloomington, 1966), pp. 413-425.
-
(1966)
Perspectives in Geometry and Relativity; Essays in Honor of Václav Hlavatý
, pp. 413-425
-
-
Trautman, A.1
-
16
-
-
0000886174
-
Maximally slicing a black hole
-
F. Estabrook, H. Wahlquist, S. Christensen, B. DeWitt, L. Smarr, and E. Tsiang, "Maximally slicing a black hole," Phys. Rev. D 7, 2814-2817 (1973).
-
(1973)
Phys. Rev. D
, vol.7
, pp. 2814-2817
-
-
Estabrook, F.1
Wahlquist, H.2
Christensen, S.3
DeWitt, B.4
Smarr, L.5
Tsiang, E.6
-
17
-
-
0039100713
-
The Schwarzschild radial coordinate as a measure of proper distance
-
R. Gautreau and B. Hoffmann, "The Schwarzschild radial coordinate as a measure of proper distance," Phys. Rev. D 17, 2552-2555 (1978).
-
(1978)
Phys. Rev. D
, vol.17
, pp. 2552-2555
-
-
Gautreau, R.1
Hoffmann, B.2
-
18
-
-
21844495002
-
Light cones inside the Schwarzschild radius
-
R. Gautreau, "Light cones inside the Schwarzschild radius," Am. J. Phys. 63, 431-439 (1995).
-
(1995)
Am. J. Phys
, vol.63
, pp. 431-439
-
-
Gautreau, R.1
-
19
-
-
0000226569
-
A simple stationary line element for the Schwarzschild geometry, and some applications
-
P. Kraus and F. Wilczek, "A simple stationary line element for the Schwarzschild geometry, and some applications," Mod. Phys. Lett. A 9, 3713-3719 (1994).
-
(1994)
Mod. Phys. Lett. A
, vol.9
, pp. 3713-3719
-
-
Kraus, P.1
Wilczek, F.2
-
20
-
-
0004255656
-
A Class of quasistationary regular line elements for the Schwarzschild geometry
-
gr-qc/9407005
-
K. Lake, "A Class of quasistationary regular line elements for the Schwarzschild geometry," gr-qc/9407005.
-
-
-
Lake, K.1
-
21
-
-
3142634512
-
Gravity, gauge theories and geometric algebra
-
A. Lasenby, C. Doran, and S. Gull, "Gravity, gauge theories and geometric algebra," Philos. Trans. R. Soc. London, Ser. A 356, 487-582 (1998).
-
(1998)
Philos. Trans. R. Soc. London, Ser. A
, vol.356
, pp. 487-582
-
-
Lasenby, A.1
Doran, C.2
Gull, S.3
-
22
-
-
0346288393
-
Relativistic gravitational fields with close Newtonian analogs
-
edited by Alex Harvey Springer, New York
-
P. Nurowski, E. Schucking, and A. Trautman, "Relativistic gravitational fields with close Newtonian analogs," in On Einstein's Path: Essays in Honor of Engelbert Schucking, edited by Alex Harvey (Springer, New York, 1999), pp. 329-337.
-
(1999)
On Einstein's Path: Essays in Honor of Engelbert Schucking
, pp. 329-337
-
-
Nurowski, P.1
Schucking, E.2
Trautman, A.3
-
23
-
-
45549099137
-
What is wrong with Schwarzschild's coordinates?
-
J. Czerniawski, "What is wrong with Schwarzschild's coordinates?," Concepts Phys. 3, 307-318 (2006).
-
(2006)
Concepts Phys
, vol.3
, pp. 307-318
-
-
Czerniawski, J.1
-
26
-
-
0002773127
-
The dynamics of general relativity
-
edited by Louis Witten Wiley, New York
-
R. Arnowitt, S. Deser, and C. W. Misner, "The dynamics of general relativity," in Gravitation, An Introduction to Current Research, edited by Louis Witten (Wiley, New York, 1962), pp. 227-265.
-
(1962)
Gravitation, An Introduction to Current Research
, pp. 227-265
-
-
Arnowitt, R.1
Deser, S.2
Misner, C.W.3
-
27
-
-
0035536927
-
Numerical relativity: A review
-
L. Lehner, "Numerical relativity: A review," Class. Quantum Grav. 18, R25-86 (2001).
-
(2001)
Class. Quantum Grav
, vol.18
-
-
Lehner, L.1
-
28
-
-
21344495601
-
The warp drive: Hyper-fast travel within general relativity
-
M. Alcubierre, "The warp drive: Hyper-fast travel within general relativity," Class. Quantum Grav. 11, L73-L79 (1994).
-
(1994)
Class. Quantum Grav
, vol.11
-
-
Alcubierre, M.1
-
29
-
-
10844219732
-
Fundamental limitations on 'warp drive' spacetimes
-
F. S. N. Lobo and M. Visser, "Fundamental limitations on 'warp drive' spacetimes," Class. Quantum Grav. 21, 5871-5892 (2004).
-
(2004)
Class. Quantum Grav
, vol.21
, pp. 5871-5892
-
-
Lobo, F.S.N.1
Visser, M.2
-
30
-
-
23544447930
-
Experimental black hole evaporation
-
W. G. Unruh, "Experimental black hole evaporation," Phys. Rev. D 14, 1351-1353 (1981).
-
(1981)
Phys. Rev. D
, vol.14
, pp. 1351-1353
-
-
Unruh, W.G.1
-
31
-
-
24944577023
-
Analogue gravity
-
C. Barceló, S. Liberati, and M. Visser, "Analogue gravity," Living Rev. Relativ. 8, 12 (2005),.
-
(2005)
Living Rev. Relativ
, vol.8
, pp. 12
-
-
Barceló, C.1
Liberati, S.2
Visser, M.3
-
32
-
-
33644950301
-
Newtonian limits of warp drive spacetimes
-
J. Natário, "Newtonian limits of warp drive spacetimes," Gen. Rel. Grav. 38, 475-484 (2006).
-
(2006)
Gen. Rel. Grav
, vol.38
, pp. 475-484
-
-
Natário, J.1
-
33
-
-
21244467869
-
Vortex analogue for the equatorial geometry of the Kerr black hole
-
M. Visser and S. E. Ch. Weinfurtner, "Vortex analogue for the equatorial geometry of the Kerr black hole," Class. Quantum Grav. 22, 2493-2510 (2005).
-
(2005)
Class. Quantum Grav
, vol.22
, pp. 2493-2510
-
-
Visser, M.1
Weinfurtner, S.E.C.2
-
34
-
-
3242683500
-
Nonexistence of conformally flat slices of the Kerr spacetime
-
Phys. Rev. D, 124011-1-4
-
A. Garat and R. H. Price, "Nonexistence of conformally flat slices of the Kerr spacetime," Phys. Rev. D 61, 124011-1-4 (2000).
-
(2000)
, vol.61
-
-
Garat, A.1
Price, R.H.2
-
35
-
-
1442331435
-
Nonexistence of conformally flat slices in Kerr and other stationary spacetimes
-
Phys. Rev. Lett, 041101-1-4
-
J. A. Valiente Kroon, "Nonexistence of conformally flat slices in Kerr and other stationary spacetimes," Phys. Rev. Lett. 92, 041101-1-4 (2004).
-
(2004)
, vol.92
-
-
Valiente Kroon, J.A.1
-
36
-
-
3242732277
-
A new form of the Kerr solution
-
Phys. Rev. D, 067503-1-4
-
C. Doran, "A new form of the Kerr solution," Phys. Rev. D 61, 067503-1-4 (2000).
-
(2000)
, vol.61
-
-
Doran, C.1
-
37
-
-
3242716141
-
Initial data for numerical relativity
-
G. B. Cook, "Initial data for numerical relativity," Living Rev. Relativ. 3, 2000-5 (2000).
-
(2000)
Living Rev. Relativ
, vol.3
, pp. 2000-2005
-
-
Cook, G.B.1
-
39
-
-
36149009934
-
Relativistic equations for adiabatic, spherically symmetric gravitational collapse
-
C. W. Misner and D. H. Sharp, "Relativistic equations for adiabatic, spherically symmetric gravitational collapse," Phys. Rev. 136, B571-B576 (1964).
-
(1964)
Phys. Rev
, vol.136
-
-
Misner, C.W.1
Sharp, D.H.2
-
41
-
-
0003353081
-
Structure of space-time
-
edited by C. M. de Witt and J. A. Wheeler W. A. Benjamin, New York
-
R. Penrose, "Structure of space-time," in Battelle Rencontres: 1967 Lec tures in Mathematics and Physics, edited by C. M. de Witt and J. A. Wheeler (W. A. Benjamin, New York, 1968), pp. 121-235.
-
(1968)
Battelle Rencontres: 1967 Lec tures in Mathematics and Physics
, pp. 121-235
-
-
Penrose, R.1
-
42
-
-
33750649637
-
Internal structure of black holes
-
E. Poisson and W. Israel, "Internal structure of black holes," Phys. Rev. D 41, 1796-1809 (1990).
-
(1990)
Phys. Rev. D
, vol.41
, pp. 1796-1809
-
-
Poisson, E.1
Israel, W.2
-
43
-
-
18544375002
-
-
A. J. S. Hamilton and S. E. Pollack, Inside charged black holes I. Baryons, Phys. Rev. D 71, 084031-1-29 (2005);
-
A. J. S. Hamilton and S. E. Pollack, "Inside charged black holes I. Baryons," Phys. Rev. D 71, 084031-1-29 (2005);
-
-
-
-
44
-
-
45549098865
-
-
A. J. S. Hamilton and S. E. Pollack, Inside charged black holes II. Baryons plus dark matter, ibid. 084032-1-18 (2005).
-
A. J. S. Hamilton and S. E. Pollack, "Inside charged black holes II. Baryons plus dark matter," ibid. 084032-1-18 (2005).
-
-
-
-
45
-
-
21144474403
-
Imaginary numbers are not real - the geometric algebra of spacetime
-
S. Gull, A. Lasenby, and C. Doran, "Imaginary numbers are not real - the geometric algebra of spacetime," Found. Phys. 23, 1175-1201 (1993),;
-
(1993)
Found. Phys
, vol.23
, pp. 1175-1201
-
-
Gull, S.1
Lasenby, A.2
Doran, C.3
-
47
-
-
0002945356
-
Maximal analytic extension of the Kerr metric
-
R. H. Boyer and R. W. Lindquist, "Maximal analytic extension of the Kerr metric," J. Math. Phys. 8, 265-281 (1967).
-
(1967)
J. Math. Phys
, vol.8
, pp. 265-281
-
-
Boyer, R.H.1
Lindquist, R.W.2
-
48
-
-
45549086767
-
-
A local gauge transformation is a Lorentz transformation that varies from place to place
-
A local gauge transformation is a Lorentz transformation that varies from place to place.
-
-
-
|