메뉴 건너뛰기




Volumn 41, Issue 10, 2008, Pages 2980-2992

A lazy bagging approach to classification

Author keywords

Bagging; Classification; Classifier ensemble; Lazy learning

Indexed keywords

TESTING;

EID: 45549087646     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2008.03.008     Document Type: Article
Times cited : (31)

References (29)
  • 2
    • 0002676017 scopus 로고    scopus 로고
    • Editorial: lazy learning
    • Aha D.W. Editorial: lazy learning. Artif. Intell. Rev. 11 1-5 (1997)
    • (1997) Artif. Intell. Rev. , vol.11 , Issue.1-5
    • Aha, D.W.1
  • 3
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha D., Kibler D., and Albert M. Instance-based learning algorithms. Mach. learn. 6 (1991) 37-66
    • (1991) Mach. learn. , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2    Albert, M.3
  • 4
    • 1942517302 scopus 로고    scopus 로고
    • X.Z. Fern, C.E. Brodley, Boosting lazy decision trees, In: Proceedings of the 20th ICML Conference, 2003.
    • X.Z. Fern, C.E. Brodley, Boosting lazy decision trees, In: Proceedings of the 20th ICML Conference, 2003.
  • 5
    • 45549101187 scopus 로고    scopus 로고
    • S.D. Bay, Combining nearest neighbor classifiers through multiple attribute subsets, In: Proceedings of the 15th ICML Conference, 1998.
    • S.D. Bay, Combining nearest neighbor classifiers through multiple attribute subsets, In: Proceedings of the 15th ICML Conference, 1998.
  • 7
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to Boosting
    • Freund Y., and Schapire R. A decision-theoretic generalization of on-line learning and an application to Boosting. Comput. Syst. Sci. 55 1 (1997) 119-139
    • (1997) Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 9
    • 1942516883 scopus 로고    scopus 로고
    • Using linear-threshold algorithms to combine multi-class sub-experts
    • Mesterharm C. Using linear-threshold algorithms to combine multi-class sub-experts. Proceedings of the 20th ICML Conference (2003) 544-551
    • (2003) Proceedings of the 20th ICML Conference , pp. 544-551
    • Mesterharm, C.1
  • 10
    • 45549092011 scopus 로고    scopus 로고
    • L. Beriman, Bias, variance, and arching classifiers, Technical Report 460, UC-Berkeley, CA, 1996.
    • L. Beriman, Bias, variance, and arching classifiers, Technical Report 460, UC-Berkeley, CA, 1996.
  • 11
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting and variants
    • Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting and variants. Mach. Learn. 36 (1999) 105-142
    • (1999) Mach. Learn. , vol.36 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 14
    • 0037403462 scopus 로고    scopus 로고
    • Variance and bias for general loss function
    • James G. Variance and bias for general loss function. Mach. Learn. 51 2 (2003) 115-135
    • (2003) Mach. Learn. , vol.51 , Issue.2 , pp. 115-135
    • James, G.1
  • 18
    • 0001218846 scopus 로고
    • On the association of attributes in statistics
    • Yule GU. On the association of attributes in statistics. Philos. Trans. Ser. A 194 (1900) 257-319
    • (1900) Philos. Trans. Ser. A , vol.194 , pp. 257-319
    • Yule, GU.1
  • 19
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L., and Whitaker C. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51 2 (2003) 181-207
    • (2003) Mach. Learn. , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 20
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006) 1-30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 21
    • 45549089726 scopus 로고    scopus 로고
    • P. Domingos, A unified bias-variance decomposition, and its applications, In: Proceedings of the Seventeenth International Conference on Machine Learning, Stanford, CA, 2000, Morgan Kaufmann, Los Altos, CA, pp. 231-238.
    • P. Domingos, A unified bias-variance decomposition, and its applications, In: Proceedings of the Seventeenth International Conference on Machine Learning, Stanford, CA, 2000, Morgan Kaufmann, Los Altos, CA, pp. 231-238.
  • 22
    • 45549097689 scopus 로고    scopus 로고
    • P. Domingos, A unified bias-variance decomposition for zero-one and squared loss. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence, Austin, TX, 2000, AAAI Press, pp. 564-569.
    • P. Domingos, A unified bias-variance decomposition for zero-one and squared loss. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence, Austin, TX, 2000, AAAI Press, pp. 564-569.
  • 23
    • 45549086257 scopus 로고    scopus 로고
    • C.L. Blake, C.J. Merz, UCI Repository of Machine Learning Databases, 1998.
    • C.L. Blake, C.J. Merz, UCI Repository of Machine Learning Databases, 1998.
  • 24
    • 45549107112 scopus 로고    scopus 로고
    • P. Domingos, A unified bias-variance decomposition, Technical Report, Department of Computer Science and Engineering, University of Washington, Seattle, WA, 2000.
    • P. Domingos, A unified bias-variance decomposition, Technical Report, Department of Computer Science and Engineering, University of Washington, Seattle, WA, 2000.
  • 25
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11 1 (1940) 86-92
    • (1940) Ann. Math. Stat. , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 27
    • 45549109239 scopus 로고    scopus 로고
    • J. Grass, S. Zilberstein, Anytime algorithm development tools, SIGART Artificial Intelligence. vol. 7, no. 2, ACM Press: New York, 1996.
    • J. Grass, S. Zilberstein, Anytime algorithm development tools, SIGART Artificial Intelligence. vol. 7, no. 2, ACM Press: New York, 1996.
  • 28
    • 35148836033 scopus 로고    scopus 로고
    • Classifying under computational resource constraints: anytime classification using probabilistic estimators
    • Yang Y., Webb G., Korb K., and Ting K.M. Classifying under computational resource constraints: anytime classification using probabilistic estimators. Machine Learning 69 1 (2007) 35-53
    • (2007) Machine Learning , vol.69 , Issue.1 , pp. 35-53
    • Yang, Y.1    Webb, G.2    Korb, K.3    Ting, K.M.4
  • 29
    • 49749141052 scopus 로고    scopus 로고
    • X. Zhu, Lazy bagging for classifying imbalanced data, in: Proceedings of the ICDM Conference, 2007.
    • X. Zhu, Lazy bagging for classifying imbalanced data, in: Proceedings of the ICDM Conference, 2007.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.