-
1
-
-
0030362553
-
Lazy decision trees
-
MIT Press, Cambridge, MA
-
Friedman J., Kohavi R., and Yun Y. Lazy decision trees. Proceedings of the AAAI (1996), MIT Press, Cambridge, MA 717-724
-
(1996)
Proceedings of the AAAI
, pp. 717-724
-
-
Friedman, J.1
Kohavi, R.2
Yun, Y.3
-
2
-
-
0002676017
-
Editorial: lazy learning
-
Aha D.W. Editorial: lazy learning. Artif. Intell. Rev. 11 1-5 (1997)
-
(1997)
Artif. Intell. Rev.
, vol.11
, Issue.1-5
-
-
Aha, D.W.1
-
3
-
-
0025725905
-
Instance-based learning algorithms
-
Aha D., Kibler D., and Albert M. Instance-based learning algorithms. Mach. learn. 6 (1991) 37-66
-
(1991)
Mach. learn.
, vol.6
, pp. 37-66
-
-
Aha, D.1
Kibler, D.2
Albert, M.3
-
4
-
-
1942517302
-
-
X.Z. Fern, C.E. Brodley, Boosting lazy decision trees, In: Proceedings of the 20th ICML Conference, 2003.
-
X.Z. Fern, C.E. Brodley, Boosting lazy decision trees, In: Proceedings of the 20th ICML Conference, 2003.
-
-
-
-
5
-
-
45549101187
-
-
S.D. Bay, Combining nearest neighbor classifiers through multiple attribute subsets, In: Proceedings of the 15th ICML Conference, 1998.
-
S.D. Bay, Combining nearest neighbor classifiers through multiple attribute subsets, In: Proceedings of the 15th ICML Conference, 1998.
-
-
-
-
7
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to Boosting
-
Freund Y., and Schapire R. A decision-theoretic generalization of on-line learning and an application to Boosting. Comput. Syst. Sci. 55 1 (1997) 119-139
-
(1997)
Comput. Syst. Sci.
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
8
-
-
0032021555
-
On combining classifiers
-
Kittler J., Hatef M., Duin R., and Matas J. On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20 3 (1998) 226-239
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, Issue.3
, pp. 226-239
-
-
Kittler, J.1
Hatef, M.2
Duin, R.3
Matas, J.4
-
9
-
-
1942516883
-
Using linear-threshold algorithms to combine multi-class sub-experts
-
Mesterharm C. Using linear-threshold algorithms to combine multi-class sub-experts. Proceedings of the 20th ICML Conference (2003) 544-551
-
(2003)
Proceedings of the 20th ICML Conference
, pp. 544-551
-
-
Mesterharm, C.1
-
10
-
-
45549092011
-
-
L. Beriman, Bias, variance, and arching classifiers, Technical Report 460, UC-Berkeley, CA, 1996.
-
L. Beriman, Bias, variance, and arching classifiers, Technical Report 460, UC-Berkeley, CA, 1996.
-
-
-
-
11
-
-
0032645080
-
An empirical comparison of voting classification algorithms: bagging, boosting and variants
-
Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting and variants. Mach. Learn. 36 (1999) 105-142
-
(1999)
Mach. Learn.
, vol.36
, pp. 105-142
-
-
Bauer, E.1
Kohavi, R.2
-
14
-
-
0037403462
-
Variance and bias for general loss function
-
James G. Variance and bias for general loss function. Mach. Learn. 51 2 (2003) 115-135
-
(2003)
Mach. Learn.
, vol.51
, Issue.2
, pp. 115-135
-
-
James, G.1
-
18
-
-
0001218846
-
On the association of attributes in statistics
-
Yule GU. On the association of attributes in statistics. Philos. Trans. Ser. A 194 (1900) 257-319
-
(1900)
Philos. Trans. Ser. A
, vol.194
, pp. 257-319
-
-
Yule, GU.1
-
19
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
Kuncheva L., and Whitaker C. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51 2 (2003) 181-207
-
(2003)
Mach. Learn.
, vol.51
, Issue.2
, pp. 181-207
-
-
Kuncheva, L.1
Whitaker, C.2
-
20
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demsar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006) 1-30
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
21
-
-
45549089726
-
-
P. Domingos, A unified bias-variance decomposition, and its applications, In: Proceedings of the Seventeenth International Conference on Machine Learning, Stanford, CA, 2000, Morgan Kaufmann, Los Altos, CA, pp. 231-238.
-
P. Domingos, A unified bias-variance decomposition, and its applications, In: Proceedings of the Seventeenth International Conference on Machine Learning, Stanford, CA, 2000, Morgan Kaufmann, Los Altos, CA, pp. 231-238.
-
-
-
-
22
-
-
45549097689
-
-
P. Domingos, A unified bias-variance decomposition for zero-one and squared loss. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence, Austin, TX, 2000, AAAI Press, pp. 564-569.
-
P. Domingos, A unified bias-variance decomposition for zero-one and squared loss. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence, Austin, TX, 2000, AAAI Press, pp. 564-569.
-
-
-
-
23
-
-
45549086257
-
-
C.L. Blake, C.J. Merz, UCI Repository of Machine Learning Databases, 1998.
-
C.L. Blake, C.J. Merz, UCI Repository of Machine Learning Databases, 1998.
-
-
-
-
24
-
-
45549107112
-
-
P. Domingos, A unified bias-variance decomposition, Technical Report, Department of Computer Science and Engineering, University of Washington, Seattle, WA, 2000.
-
P. Domingos, A unified bias-variance decomposition, Technical Report, Department of Computer Science and Engineering, University of Washington, Seattle, WA, 2000.
-
-
-
-
25
-
-
0001837148
-
A comparison of alternative tests of significance for the problem of m rankings
-
Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11 1 (1940) 86-92
-
(1940)
Ann. Math. Stat.
, vol.11
, Issue.1
, pp. 86-92
-
-
Friedman, M.1
-
27
-
-
45549109239
-
-
J. Grass, S. Zilberstein, Anytime algorithm development tools, SIGART Artificial Intelligence. vol. 7, no. 2, ACM Press: New York, 1996.
-
J. Grass, S. Zilberstein, Anytime algorithm development tools, SIGART Artificial Intelligence. vol. 7, no. 2, ACM Press: New York, 1996.
-
-
-
-
28
-
-
35148836033
-
Classifying under computational resource constraints: anytime classification using probabilistic estimators
-
Yang Y., Webb G., Korb K., and Ting K.M. Classifying under computational resource constraints: anytime classification using probabilistic estimators. Machine Learning 69 1 (2007) 35-53
-
(2007)
Machine Learning
, vol.69
, Issue.1
, pp. 35-53
-
-
Yang, Y.1
Webb, G.2
Korb, K.3
Ting, K.M.4
-
29
-
-
49749141052
-
-
X. Zhu, Lazy bagging for classifying imbalanced data, in: Proceedings of the ICDM Conference, 2007.
-
X. Zhu, Lazy bagging for classifying imbalanced data, in: Proceedings of the ICDM Conference, 2007.
-
-
-
|