메뉴 건너뛰기




Volumn 219, Issue 1, 2008, Pages 216-222

New convergence behavior of high-order hopfield neural networks with time-varying coefficients

Author keywords

Convergence; Delays; High order Hopfield neural networks; Time varying coefficients

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER NETWORKS; HOPFIELD NEURAL NETWORKS; METROPOLITAN AREA NETWORKS; NETWORK PROTOCOLS; TIME VARYING NETWORKS; TIME VARYING SYSTEMS;

EID: 45449118684     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2007.07.011     Document Type: Article
Times cited : (19)

References (8)
  • 1
    • 33846058657 scopus 로고    scopus 로고
    • LMI-based criteria for global robust stability of bidirectional associative memory networks with time delay
    • Cao J., Ho D.W.C., and Huang X. LMI-based criteria for global robust stability of bidirectional associative memory networks with time delay. Nonlinear Anal. 66 7 (2007) 1558-1572
    • (2007) Nonlinear Anal. , vol.66 , Issue.7 , pp. 1558-1572
    • Cao, J.1    Ho, D.W.C.2    Huang, X.3
  • 2
    • 10644236158 scopus 로고    scopus 로고
    • Exponential stability of high-order bidirectional associative memory neural networks with time delays
    • Cao J., Liang J., and Lam J. Exponential stability of high-order bidirectional associative memory neural networks with time delays. Phys. D Nonlinear Phenomena 199 3-4 (2004) 425-436
    • (2004) Phys. D Nonlinear Phenomena , vol.199 , Issue.3-4 , pp. 425-436
    • Cao, J.1    Liang, J.2    Lam, J.3
  • 3
    • 33751202426 scopus 로고    scopus 로고
    • Global exponential stability of impulsive high-order BAM neural networks with time-varying delays
    • Ho D.W.C., Liang J., and Lam J. Global exponential stability of impulsive high-order BAM neural networks with time-varying delays. Neural Networks 19 10 (2006) 1581-1590
    • (2006) Neural Networks , vol.19 , Issue.10 , pp. 1581-1590
    • Ho, D.W.C.1    Liang, J.2    Lam, J.3
  • 4
    • 29644436526 scopus 로고    scopus 로고
    • Existence and exponential stability of periodic solutions for cellular neural networks with time-varying delays
    • Liu B., and Huang L. Existence and exponential stability of periodic solutions for cellular neural networks with time-varying delays. Phys. Lett. A 349 6 (2006) 474-483
    • (2006) Phys. Lett. A , vol.349 , Issue.6 , pp. 474-483
    • Liu, B.1    Huang, L.2
  • 5
    • 33846896705 scopus 로고    scopus 로고
    • Novel global stability criteria for high-order Hopfield-type neural networks with time-varying delays
    • Lou X.-Y., and Cui B.-T. Novel global stability criteria for high-order Hopfield-type neural networks with time-varying delays. J. Math. Anal. Appl. 330 1 (2007) 144-158
    • (2007) J. Math. Anal. Appl. , vol.330 , Issue.1 , pp. 144-158
    • Lou, X.-Y.1    Cui, B.-T.2
  • 6
    • 33745126296 scopus 로고    scopus 로고
    • LMI-based criteria for stability of high-order neural networks with time-varying delay
    • Ren F., and Cao J. LMI-based criteria for stability of high-order neural networks with time-varying delay. Nonlinear Anal.: Real World Appl. 7 5 (2006) 967-979
    • (2006) Nonlinear Anal.: Real World Appl. , vol.7 , Issue.5 , pp. 967-979
    • Ren, F.1    Cao, J.2
  • 7
    • 34247125186 scopus 로고    scopus 로고
    • Global exponential stability of cellular neural networks with mixed delays and impulses
    • Xiong W., Zhou Q., Xiao B., and Yu Y. Global exponential stability of cellular neural networks with mixed delays and impulses. Chaos Solitons Fractals 34 3 (2007) 896-902
    • (2007) Chaos Solitons Fractals , vol.34 , Issue.3 , pp. 896-902
    • Xiong, W.1    Zhou, Q.2    Xiao, B.3    Yu, Y.4
  • 8
    • 0038344694 scopus 로고    scopus 로고
    • Global asymptotic stability of high-order Hopfield type neural networks with time delays
    • Xu B., Liu X., and Liao X. Global asymptotic stability of high-order Hopfield type neural networks with time delays. Comput. Math. Appl. 45 (2003) 1729-1737
    • (2003) Comput. Math. Appl. , vol.45 , pp. 1729-1737
    • Xu, B.1    Liu, X.2    Liao, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.