-
1
-
-
0034647228
-
-
a) A. Sekiguchi, T. Matsuo, H. Watanabe, J. Am. Chem. Soc. 2000, 122, 5652;
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 5652
-
-
Sekiguchi, A.1
Matsuo, T.2
Watanabe, H.3
-
4
-
-
0141692445
-
-
W. Mesbah, C. Präsang, M. Hofmann, G. Geiseler, W. Massa, A. Berndt, Angew. Chem. 2003,115, 1758; Angew. Chem. Int. Ed. 2003, 42, 1717.
-
(2003)
Angew. Chem.
, vol.115
, pp. 1758
-
-
Mesbah, W.1
Präsang, C.2
Hofmann, M.3
Geiseler, G.4
Massa, W.5
Berndt, A.6
-
5
-
-
0038555538
-
-
W. Mesbah, C. Präsang, M. Hofmann, G. Geiseler, W. Massa, A. Berndt, Angew. Chem. 2003,115, 1758; Angew. Chem. Int. Ed. 2003, 42, 1717.
-
(2003)
Angew. Chem. Int. Ed.
, vol.42
, pp. 1717
-
-
-
6
-
-
0035793355
-
-
a) X. Li, A. E. Kuznetsov, H. F. Zhang, A. I. Boldyrev, L. S. Wang, Science 2001, 291, 859;
-
(2001)
Science
, vol.291
, pp. 859
-
-
Li, X.1
Kuznetsov, A.E.2
Zhang, H.F.3
Boldyrev, A.I.4
Wang, L.S.5
-
8
-
-
4544381777
-
-
B. Twamley, P. P. Power, Angew. Chem. 2000, 112, 3648; Angew. Chem. Int. Ed. 2000, 39, 3500.
-
(2000)
Angew. Chem.
, vol.112
, pp. 3648
-
-
Twamley, B.1
Power, P.P.2
-
9
-
-
0034596812
-
-
B. Twamley, P. P. Power, Angew. Chem. 2000, 112, 3648; Angew. Chem. Int. Ed. 2000, 39, 3500.
-
(2000)
Angew. Chem. Int. Ed.
, vol.39
, pp. 3500
-
-
-
10
-
-
0005833957
-
-
a) C. M. Mikulski, P. J. Russo, M. S. Saran, A. G. MacDiarmid, A. F. Garito, A. J. Heger, J. Am. Chem. Soc. 1975, 97, 6358;
-
(1975)
J. Am. Chem. Soc.
, vol.97
, pp. 6358
-
-
Mikulski, C.M.1
Russo, P.J.2
Saran, M.S.3
MacDiarmid, A.G.4
Garito, A.F.5
Heger, A.J.6
-
11
-
-
1642279535
-
-
b) Y. Jung, T. Heine, P. v. R. Schleyer, M. Head-Gordon, J. Am. Chem. Soc. 2004, 126, 3132.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 3132
-
-
Jung, Y.1
Heine, T.2
Schleyer, P.V.R.3
Head-Gordon, M.4
-
12
-
-
0001375705
-
-
E. Niecke, A. Fuchs, F. Baumeister, M. Nieger, W. W. Schoeller, Angew. Chem. 1995, 107, 640; Angew. Chem. Int. Ed. Engl. 1995, 34, 555.
-
(1995)
Angew. Chem.
, vol.107
, pp. 640
-
-
Niecke, E.1
Fuchs, A.2
Baumeister, F.3
Nieger, M.4
Schoeller, W.W.5
-
13
-
-
33748214650
-
-
E. Niecke, A. Fuchs, F. Baumeister, M. Nieger, W. W. Schoeller, Angew. Chem. 1995, 107, 640; Angew. Chem. Int. Ed. Engl. 1995, 34, 555.
-
(1995)
Angew. Chem. Int. Ed. Engl.
, vol.34
, pp. 555
-
-
-
14
-
-
0000204201
-
-
a) O. Schmidt, A. Fuchs, D. Gudat, M. Nieger, W. Hoffbauer, E. Niecke, W. W. Schoeller, Angew. Chem. 1998, 110, 995; Angew. Chem. Int. Ed. 1998, 37, 949;
-
(1998)
Angew. Chem.
, vol.110
, pp. 995
-
-
Schmidt, O.1
Fuchs, A.2
Gudat, D.3
Nieger, M.4
Hoffbauer, W.5
Niecke, E.6
Schoeller, W.W.7
-
15
-
-
0031971664
-
-
a) O. Schmidt, A. Fuchs, D. Gudat, M. Nieger, W. Hoffbauer, E. Niecke, W. W. Schoeller, Angew. Chem. 1998, 110, 995; Angew. Chem. Int. Ed. 1998, 37, 949;
-
(1998)
Angew. Chem. Int. Ed.
, vol.37
, pp. 949
-
-
-
16
-
-
0000369366
-
-
b) E. Niecke, A. Fuchs, M. Nieger, Angew. Chem. 1999, 111, 3213; Angew. Chem. Int. Ed. 1999, 38, 3028;
-
(1999)
Angew. Chem.
, vol.111
, pp. 3213
-
-
Niecke, E.1
Fuchs, A.2
Nieger, M.3
-
17
-
-
0033581582
-
-
b) E. Niecke, A. Fuchs, M. Nieger, Angew. Chem. 1999, 111, 3213; Angew. Chem. Int. Ed. 1999, 38, 3028;
-
(1999)
Angew. Chem. Int. Ed.
, vol.38
, pp. 3028
-
-
-
18
-
-
0000503505
-
-
c) E. Niecke, A. Fuchs, M. Nieger, O. Schmidt, W. W. Schoeller, Angew. Chem. 1999, 111, 3216; Angew. Chem. Int. Ed. 1999, 38, 3031;
-
(1999)
Angew. Chem.
, vol.111
, pp. 3216
-
-
Niecke, E.1
Fuchs, A.2
Nieger, M.3
Schmidt, O.4
Schoeller, W.W.5
-
19
-
-
0033581616
-
-
c) E. Niecke, A. Fuchs, M. Nieger, O. Schmidt, W. W. Schoeller, Angew. Chem. 1999, 111, 3216; Angew. Chem. Int. Ed. 1999, 38, 3031;
-
(1999)
Angew. Chem. Int. Ed.
, vol.38
, pp. 3031
-
-
-
20
-
-
1042295267
-
-
d) H. Sugiyama, S. Ito, M. Yoshifuji, Angew. Chem. 2003, 115, 3932; Angew. Chem. Int. Ed, 2003, 42, 3802;
-
(2003)
Angew. Chem.
, vol.115
, pp. 3932
-
-
Sugiyama, H.1
Ito, S.2
Yoshifuji, M.3
-
21
-
-
0041863959
-
-
d) H. Sugiyama, S. Ito, M. Yoshifuji, Angew. Chem. 2003, 115, 3932; Angew. Chem. Int. Ed, 2003, 42, 3802;
-
(2003)
Angew. Chem. Int. Ed.
, vol.42
, pp. 3802
-
-
-
22
-
-
3042575024
-
-
e) M. Sebastian, M. Nieger, D. Szieberth, L. Nyulászi, E. Niecke, Angew. Chem. 2004, 116, 647; Angew. Chem. Int. Ed 2004, 43, 637.
-
(2004)
Angew. Chem.
, vol.116
, pp. 647
-
-
Sebastian, M.1
Nieger, M.2
Szieberth, D.3
Nyulászi, L.4
Niecke, E.5
-
23
-
-
1042300197
-
-
e) M. Sebastian, M. Nieger, D. Szieberth, L. Nyulászi, E. Niecke, Angew. Chem. 2004, 116, 647; Angew. Chem. Int. Ed 2004, 43, 637.
-
(2004)
Angew. Chem. Int. Ed.
, vol.43
, pp. 637
-
-
-
24
-
-
0037040584
-
-
D. Scheschkewitz, H. Amii, H. Gornitzka, D. Bourissou, G. Bertrand, Science 2002, 295, 1880.
-
(2002)
Science
, vol.295
, pp. 1880
-
-
Scheschkewitz, D.1
Amii, H.2
Gornitzka, H.3
Bourissou, D.4
Bertrand, G.5
-
25
-
-
0042531956
-
-
a) W. W. Schoeller, A. Rozhenko, D. Bourissou, G. Bertrand, Chem. Eur. J. 2003, 9, 3611;
-
(2003)
Chem. Eur. J.
, vol.9
, pp. 3611
-
-
Schoeller, W.W.1
Rozhenko, A.2
Bourissou, D.3
Bertrand, G.4
-
26
-
-
3042530961
-
-
b) D. Scheschkewitz, H. Amii, H. Gornitzka, W. W. Schoeller, D. Bourissou, G. Bertrand, Angew. Chem. 2004, 116, 595; Angew. Chem. Int. Ed. 2004, 43, 585.
-
(2004)
Angew. Chem.
, vol.116
, pp. 595
-
-
Scheschkewitz, D.1
Amii, H.2
Gornitzka, H.3
Schoeller, W.W.4
Bourissou, D.5
Bertrand, G.6
-
27
-
-
1042300204
-
-
b) D. Scheschkewitz, H. Amii, H. Gornitzka, W. W. Schoeller, D. Bourissou, G. Bertrand, Angew. Chem. 2004, 116, 595; Angew. Chem. Int. Ed. 2004, 43, 585.
-
(2004)
Angew. Chem. Int. Ed.
, vol.43
, pp. 585
-
-
-
29
-
-
0012355539
-
-
b) H. Grützmacher, F. Breher, Angew. Chem. 2002, 114, 4178; Angew. Chem. Int. Ed. 2002, 41, 4006.
-
(2002)
Angew. Chem.
, vol.114
, pp. 4178
-
-
Grützmacher, H.1
Breher, F.2
-
30
-
-
0037021045
-
-
b) H. Grützmacher, F. Breher, Angew. Chem. 2002, 114, 4178; Angew. Chem. Int. Ed. 2002, 41, 4006.
-
(2002)
Angew. Chem. Int. Ed.
, vol.41
, pp. 4006
-
-
-
31
-
-
0042208450
-
-
a) A. Sekiguchi, T. Fukawa, V. Ya. Lee, M. Nakamoto, J. Am. Chem. Soc. 2003, 725, 9250;
-
(2003)
J. Am. Chem. Soc.
, vol.725
, pp. 9250
-
-
Sekiguchi, A.1
Fukawa, T.2
Lee, V.Ya.3
Nakamoto, M.4
-
35
-
-
0025742826
-
-
e) R. W. Chorley, P. B. Hitchcock, B. S. Jolly, M. F. Lappert, G. A. Lawless, J. Chem. Soc. Chem. Commun. 1991, 1302;
-
(1991)
J. Chem. Soc. Chem. Commun.
, pp. 1302
-
-
Chorley, R.W.1
Hitchcock, P.B.2
Jolly, B.S.3
Lappert, M.F.4
Lawless, G.A.5
-
37
-
-
0001757973
-
-
a) P. B. Hitchcock, M. F. Lappert, G. A. Lawless, D. M. de Lima, L. J.-M. Pierssens, J. Organomet. Chem. 2000, 601, 142;
-
(2000)
J. Organomet. Chem.
, vol.601
, pp. 142
-
-
Hitchcock, P.B.1
Lappert, M.F.2
Lawless, G.A.3
De Lima, D.M.4
Pierssens, L.J.-M.5
-
39
-
-
0000970051
-
-
c) P. B. Hitchcock, M. F. Lappert, L. J.-M. Pierssens, Organometallics 1998, 17, 2686.
-
(1998)
Organometallics
, vol.17
, pp. 2686
-
-
Hitchcock, P.B.1
Lappert, M.F.2
Pierssens, L.J.-M.3
-
41
-
-
84943853893
-
-
b) U. Wannagat, H. Kuckertz, C. Krüger, J. Pump, Z. Anorg. Allg. Chem. 1964, 333, 54.
-
(1964)
Z. Anorg. Allg. Chem.
, vol.333
, pp. 54
-
-
Wannagat, U.1
Kuckertz, H.2
Krüger, C.3
Pump, J.4
-
43
-
-
4544245910
-
-
2 = 0.108. CCDC-233571 contains the supplementary crystallographic data for this paper. These data can be obtained free of! charge via www.ccdc.cam.ac.uk/conts/ retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-0336-033; or deposit@ccdc.cam.ac.uk).
-
-
-
-
45
-
-
0013531199
-
-
S. Chitsaz, B. Neumüller, K. Dehnicke, Z. Anorg. Allg. Chem. 1999, 625, 1670.
-
(1999)
Z. Anorg. Allg. Chem.
, vol.625
, pp. 1670
-
-
Chitsaz, S.1
Neumüller, B.2
Dehnicke, K.3
-
46
-
-
0038023343
-
-
Calculations were performed by using Slater-type orbitals with the BP86 functional as implemented in ADF2000.02 (E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 1973, 2, 41). The numerical integration procedure applied for the calculations is that of G. te Velde and E. J. Baerends (J. Comput. Phys. 1992, 99, 84). A triple-ξ Slater-Type-Orbital (STO) basis set with a polarization function was used for describing the valence electrons of Sn (4d 5s 5p), N (2s 2p), Cl (3s 3p) and Si (3s, 3p). A double-ξ STO basis set was used for C (2s 2p) and H, augmented by an extra polarization function. Electrons in lower shells were treated with ihe frozen core approximation. Energies of 3 were calculated by using the local density approximation (LDA) (S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200). The non-local exchange of A. D. Becke (A. D. Becke, Phys. Rev. A 1988, 38, 2398) and the non-local correlation correction of J. P. Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822) and the scalar relativistic correction (T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders, W. J. Ravenek, J. Phys. Chem. 1989, 93, 3050) were applied to the LDA density. NMR chemical shifts were calculated by using the implementation by G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1995, 99, 606.
-
(1973)
Chem. Phys.
, vol.2
, pp. 41
-
-
Baerends, E.J.1
Ellis, D.E.2
Ros, P.3
-
47
-
-
28144440701
-
-
Calculations were performed by using Slater-type orbitals with the BP86 functional as implemented in ADF2000.02 (E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 1973, 2, 41). The numerical integration procedure applied for the calculations is that of G. te Velde and E. J. Baerends (J. Comput. Phys. 1992, 99, 84). A triple-ξ Slater-Type-Orbital (STO) basis set with a polarization function was used for describing the valence electrons of Sn (4d 5s 5p), N (2s 2p), Cl (3s 3p) and Si (3s, 3p). A double-ξ STO basis set was used for C (2s 2p) and H, augmented by an extra polarization function. Electrons in lower shells were treated with ihe frozen core approximation. Energies of 3 were calculated by using the local density approximation (LDA) (S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200). The non-local exchange of A. D. Becke (A. D. Becke, Phys. Rev. A 1988, 38, 2398) and the non-local correlation correction of J. P. Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822) and the scalar relativistic correction (T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders, W. J. Ravenek, J. Phys. Chem. 1989, 93, 3050) were applied to the LDA density. NMR chemical shifts were calculated by using the implementation by G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1995, 99, 606.
-
(1992)
J. Comput. Phys.
, vol.99
, pp. 84
-
-
Te Velde, G.1
Baerends, E.J.2
-
48
-
-
0000216001
-
-
Calculations were performed by using Slater-type orbitals with the BP86 functional as implemented in ADF2000.02 (E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 1973, 2, 41). The numerical integration procedure applied for the calculations is that of G. te Velde and E. J. Baerends (J. Comput. Phys. 1992, 99, 84). A triple-ξ Slater-Type-Orbital (STO) basis set with a polarization function was used for describing the valence electrons of Sn (4d 5s 5p), N (2s 2p), Cl (3s 3p) and Si (3s, 3p). A double-ξ STO basis set was used for C (2s 2p) and H, augmented by an extra polarization function. Electrons in lower shells were treated with ihe frozen core approximation. Energies of 3 were calculated by using the local density approximation (LDA) (S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200). The non-local exchange of A. D. Becke (A. D. Becke, Phys. Rev. A 1988, 38, 2398) and the non-local correlation correction of J. P. Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822) and the scalar relativistic correction (T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders, W. J. Ravenek, J. Phys. Chem. 1989, 93, 3050) were applied to the LDA density. NMR chemical shifts were calculated by using the implementation by G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1995, 99, 606.
-
(1980)
Can. J. Phys.
, vol.58
, pp. 1200
-
-
Vosko, S.H.1
Wilk, L.2
Nusair, M.3
-
49
-
-
0000350181
-
-
Calculations were performed by using Slater-type orbitals with the BP86 functional as implemented in ADF2000.02 (E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 1973, 2, 41). The numerical integration procedure applied for the calculations is that of G. te Velde and E. J. Baerends (J. Comput. Phys. 1992, 99, 84). A triple-ξ Slater-Type-Orbital (STO) basis set with a polarization function was used for describing the valence electrons of Sn (4d 5s 5p), N (2s 2p), Cl (3s 3p) and Si (3s, 3p). A double-ξ STO basis set was used for C (2s 2p) and H, augmented by an extra polarization function. Electrons in lower shells were treated with ihe frozen core approximation. Energies of 3 were calculated by using the local density approximation (LDA) (S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200). The non-local exchange of A. D. Becke (A. D. Becke, Phys. Rev. A 1988, 38, 2398) and the non-local correlation correction of J. P. Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822) and the scalar relativistic correction (T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders, W. J. Ravenek, J. Phys. Chem. 1989, 93, 3050) were applied to the LDA density. NMR chemical shifts were calculated by using the implementation by G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1995, 99, 606.
-
(1988)
Phys. Rev. A
, vol.38
, pp. 2398
-
-
Becke, A.D.1
-
50
-
-
5944261746
-
-
Calculations were performed by using Slater-type orbitals with the BP86 functional as implemented in ADF2000.02 (E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 1973, 2, 41). The numerical integration procedure applied for the calculations is that of G. te Velde and E. J. Baerends (J. Comput. Phys. 1992, 99, 84). A triple-ξ Slater-Type-Orbital (STO) basis set with a polarization function was used for describing the valence electrons of Sn (4d 5s 5p), N (2s 2p), Cl (3s 3p) and Si (3s, 3p). A double-ξ STO basis set was used for C (2s 2p) and H, augmented by an extra polarization function. Electrons in lower shells were treated with ihe frozen core approximation. Energies of 3 were calculated by using the local density approximation (LDA) (S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200). The non-local exchange of A. D. Becke (A. D. Becke, Phys. Rev. A 1988, 38, 2398) and the non-local correlation correction of J. P. Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822) and the scalar relativistic correction (T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders, W. J. Ravenek, J. Phys. Chem. 1989, 93, 3050) were applied to the LDA density. NMR chemical shifts were calculated by using the implementation by G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1995, 99, 606.
-
(1986)
Phys. Rev. B
, vol.33
, pp. 8822
-
-
Perdew, J.P.1
-
51
-
-
0344178884
-
-
Calculations were performed by using Slater-type orbitals with the BP86 functional as implemented in ADF2000.02 (E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 1973, 2, 41). The numerical integration procedure applied for the calculations is that of G. te Velde and E. J. Baerends (J. Comput. Phys. 1992, 99, 84). A triple-ξ Slater-Type-Orbital (STO) basis set with a polarization function was used for describing the valence electrons of Sn (4d 5s 5p), N (2s 2p), Cl (3s 3p) and Si (3s, 3p). A double-ξ STO basis set was used for C (2s 2p) and H, augmented by an extra polarization function. Electrons in lower shells were treated with ihe frozen core approximation. Energies of 3 were calculated by using the local density approximation (LDA) (S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200). The non-local exchange of A. D. Becke (A. D. Becke, Phys. Rev. A 1988, 38, 2398) and the non-local correlation correction of J. P. Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822) and the scalar relativistic correction (T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders, W. J. Ravenek, J. Phys. Chem. 1989, 93, 3050) were applied to the LDA density. NMR chemical shifts were calculated by using the implementation by G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1995, 99, 606.
-
(1989)
J. Phys. Chem.
, vol.93
, pp. 3050
-
-
Ziegler, T.1
Tschinke, V.2
Baerends, E.J.3
Snijders, J.G.4
Ravenek, W.J.5
-
52
-
-
0000797458
-
-
Calculations were performed by using Slater-type orbitals with the BP86 functional as implemented in ADF2000.02 (E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 1973, 2, 41). The numerical integration procedure applied for the calculations is that of G. te Velde and E. J. Baerends (J. Comput. Phys. 1992, 99, 84). A triple-ξ Slater-Type-Orbital (STO) basis set with a polarization function was used for describing the valence electrons of Sn (4d 5s 5p), N (2s 2p), Cl (3s 3p) and Si (3s, 3p). A double-ξ STO basis set was used for C (2s 2p) and H, augmented by an extra polarization function. Electrons in lower shells were treated with ihe frozen core approximation. Energies of 3 were calculated by using the local density approximation (LDA) (S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200). The non-local exchange of A. D. Becke (A. D. Becke, Phys. Rev. A 1988, 38, 2398) and the non-local correlation correction of J. P. Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822) and the scalar relativistic correction (T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders, W. J. Ravenek, J. Phys. Chem. 1989, 93, 3050) were applied to the LDA density. NMR chemical shifts were calculated by using the implementation by G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1995, 99, 606.
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 606
-
-
Schreckenbach, G.1
Ziegler, T.2
-
53
-
-
0004133516
-
-
Gaussian, Inc., Pittsburgh, PA
-
For confirmation, calculations were carried out by using the Gaussian98 program. (Gaussian98 (Revision A.7), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998.). The geometries were optimized by using the B3 LYP functional and the effective core potential LANL2DZ.
-
(1998)
Gaussian98 (Revision A.7
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Zakrzewski, V.G.7
Montgomery, J.A.8
Stratmann, R.E.9
Burant, J.C.10
Dapprich, S.11
Millam, J.M.12
Daniels, A.D.13
Kudin, K.N.14
Strain, M.C.15
Farkas, O.16
Tomasi, J.17
Barone, V.18
Cossi, M.19
Cammi, R.20
Mennucci, B.21
Pomelli, C.22
Adamo, C.23
Clifford, S.24
Ochterski, J.25
Petersson, G.A.26
Ayala, P.Y.27
Cui, Q.28
Morokuma, K.29
Malick, D.K.30
Rabuck, A.D.31
Raghavachari, K.32
Foresman, J.B.33
Cioslowski, J.34
Ortiz, J.V.35
Stefanov, B.B.36
Liu, G.37
Liashenko, A.38
Piskorz, P.39
Komaromi, I.40
Gomperts, R.41
Martin, R.L.42
Fox, D.J.43
Keith, T.44
Al-Laham, M.A.45
Peng, C.Y.46
Nanayakkara, A.47
Gonzalez, C.48
Challacombe, M.49
Gill, P.M.W.50
Johnson, B.G.51
Chen, W.52
Wong, M.W.53
Andres, J.L.54
Head-Gordon, M.55
Replogle, E.S.56
Pople, J.A.57
more..
-
54
-
-
0034742928
-
-
A. J. Bridgman, G. Cavigliasso, L. R. Ireland, J. Rothery, J. Chem. Soc. Dalton Trans. 2001, 2095.
-
(2001)
J. Chem. Soc. Dalton Trans.
, pp. 2095
-
-
Bridgman, A.J.1
Cavigliasso, G.2
Ireland, L.R.3
Rothery, J.4
-
55
-
-
0035969759
-
-
W. W. Schoeller, C. Begemann, E. Niecke, D. Gudat, J. Phys. Chem. A 2001, 105, 10731.
-
(2001)
J. Phys. Chem. A
, vol.105
, pp. 10731
-
-
Schoeller, W.W.1
Begemann, C.2
Niecke, E.3
Gudat, D.4
-
57
-
-
0000831229
-
-
G. van Zandwijk, R. A. J. Janssen, H. M. Buck, J. Am. Chem. Soc. 1990, 112, 4155.
-
(1990)
J. Am. Chem. Soc.
, vol.112
, pp. 4155
-
-
Van Zandwijk, G.1
Janssen, R.A.J.2
Buck, H.M.3
-
58
-
-
2542612143
-
-
C. Cui, M. Brynda, M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 2004, 126, 6510.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 6510
-
-
Cui, C.1
Brynda, M.2
Olmstead, M.M.3
Power, P.P.4
|