메뉴 건너뛰기




Volumn 43, Issue 34, 2004, Pages 4500-4504

A 1,3-diaza-2,4-distannacyclobutanediide: Synthesis, structure, and bonding

Author keywords

Density functional calculations; Heterocycles; Radicals; Tin

Indexed keywords

CHEMICAL BONDS; CHEMICAL REACTIONS; COMPUTATIONAL METHODS; STRUCTURE (COMPOSITION); SYNTHESIS (CHEMICAL);

EID: 4544379229     PISSN: 14337851     EISSN: None     Source Type: Journal    
DOI: 10.1002/anie.200460039     Document Type: Article
Times cited : (108)

References (58)
  • 5
    • 0038555538 scopus 로고    scopus 로고
    • W. Mesbah, C. Präsang, M. Hofmann, G. Geiseler, W. Massa, A. Berndt, Angew. Chem. 2003,115, 1758; Angew. Chem. Int. Ed. 2003, 42, 1717.
    • (2003) Angew. Chem. Int. Ed. , vol.42 , pp. 1717
  • 9
    • 0034596812 scopus 로고    scopus 로고
    • B. Twamley, P. P. Power, Angew. Chem. 2000, 112, 3648; Angew. Chem. Int. Ed. 2000, 39, 3500.
    • (2000) Angew. Chem. Int. Ed. , vol.39 , pp. 3500
  • 13
    • 33748214650 scopus 로고
    • E. Niecke, A. Fuchs, F. Baumeister, M. Nieger, W. W. Schoeller, Angew. Chem. 1995, 107, 640; Angew. Chem. Int. Ed. Engl. 1995, 34, 555.
    • (1995) Angew. Chem. Int. Ed. Engl. , vol.34 , pp. 555
  • 15
    • 0031971664 scopus 로고    scopus 로고
    • a) O. Schmidt, A. Fuchs, D. Gudat, M. Nieger, W. Hoffbauer, E. Niecke, W. W. Schoeller, Angew. Chem. 1998, 110, 995; Angew. Chem. Int. Ed. 1998, 37, 949;
    • (1998) Angew. Chem. Int. Ed. , vol.37 , pp. 949
  • 17
    • 0033581582 scopus 로고    scopus 로고
    • b) E. Niecke, A. Fuchs, M. Nieger, Angew. Chem. 1999, 111, 3213; Angew. Chem. Int. Ed. 1999, 38, 3028;
    • (1999) Angew. Chem. Int. Ed. , vol.38 , pp. 3028
  • 19
    • 0033581616 scopus 로고    scopus 로고
    • c) E. Niecke, A. Fuchs, M. Nieger, O. Schmidt, W. W. Schoeller, Angew. Chem. 1999, 111, 3216; Angew. Chem. Int. Ed. 1999, 38, 3031;
    • (1999) Angew. Chem. Int. Ed. , vol.38 , pp. 3031
  • 21
    • 0041863959 scopus 로고    scopus 로고
    • d) H. Sugiyama, S. Ito, M. Yoshifuji, Angew. Chem. 2003, 115, 3932; Angew. Chem. Int. Ed, 2003, 42, 3802;
    • (2003) Angew. Chem. Int. Ed. , vol.42 , pp. 3802
  • 23
    • 1042300197 scopus 로고    scopus 로고
    • e) M. Sebastian, M. Nieger, D. Szieberth, L. Nyulászi, E. Niecke, Angew. Chem. 2004, 116, 647; Angew. Chem. Int. Ed 2004, 43, 637.
    • (2004) Angew. Chem. Int. Ed. , vol.43 , pp. 637
  • 27
    • 1042300204 scopus 로고    scopus 로고
    • b) D. Scheschkewitz, H. Amii, H. Gornitzka, W. W. Schoeller, D. Bourissou, G. Bertrand, Angew. Chem. 2004, 116, 595; Angew. Chem. Int. Ed. 2004, 43, 585.
    • (2004) Angew. Chem. Int. Ed. , vol.43 , pp. 585
  • 30
    • 0037021045 scopus 로고    scopus 로고
    • b) H. Grützmacher, F. Breher, Angew. Chem. 2002, 114, 4178; Angew. Chem. Int. Ed. 2002, 41, 4006.
    • (2002) Angew. Chem. Int. Ed. , vol.41 , pp. 4006
  • 43
    • 4544245910 scopus 로고    scopus 로고
    • 2 = 0.108. CCDC-233571 contains the supplementary crystallographic data for this paper. These data can be obtained free of! charge via www.ccdc.cam.ac.uk/conts/ retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-0336-033; or deposit@ccdc.cam.ac.uk).
  • 46
    • 0038023343 scopus 로고
    • Calculations were performed by using Slater-type orbitals with the BP86 functional as implemented in ADF2000.02 (E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 1973, 2, 41). The numerical integration procedure applied for the calculations is that of G. te Velde and E. J. Baerends (J. Comput. Phys. 1992, 99, 84). A triple-ξ Slater-Type-Orbital (STO) basis set with a polarization function was used for describing the valence electrons of Sn (4d 5s 5p), N (2s 2p), Cl (3s 3p) and Si (3s, 3p). A double-ξ STO basis set was used for C (2s 2p) and H, augmented by an extra polarization function. Electrons in lower shells were treated with ihe frozen core approximation. Energies of 3 were calculated by using the local density approximation (LDA) (S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200). The non-local exchange of A. D. Becke (A. D. Becke, Phys. Rev. A 1988, 38, 2398) and the non-local correlation correction of J. P. Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822) and the scalar relativistic correction (T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders, W. J. Ravenek, J. Phys. Chem. 1989, 93, 3050) were applied to the LDA density. NMR chemical shifts were calculated by using the implementation by G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1995, 99, 606.
    • (1973) Chem. Phys. , vol.2 , pp. 41
    • Baerends, E.J.1    Ellis, D.E.2    Ros, P.3
  • 47
    • 28144440701 scopus 로고
    • Calculations were performed by using Slater-type orbitals with the BP86 functional as implemented in ADF2000.02 (E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 1973, 2, 41). The numerical integration procedure applied for the calculations is that of G. te Velde and E. J. Baerends (J. Comput. Phys. 1992, 99, 84). A triple-ξ Slater-Type-Orbital (STO) basis set with a polarization function was used for describing the valence electrons of Sn (4d 5s 5p), N (2s 2p), Cl (3s 3p) and Si (3s, 3p). A double-ξ STO basis set was used for C (2s 2p) and H, augmented by an extra polarization function. Electrons in lower shells were treated with ihe frozen core approximation. Energies of 3 were calculated by using the local density approximation (LDA) (S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200). The non-local exchange of A. D. Becke (A. D. Becke, Phys. Rev. A 1988, 38, 2398) and the non-local correlation correction of J. P. Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822) and the scalar relativistic correction (T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders, W. J. Ravenek, J. Phys. Chem. 1989, 93, 3050) were applied to the LDA density. NMR chemical shifts were calculated by using the implementation by G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1995, 99, 606.
    • (1992) J. Comput. Phys. , vol.99 , pp. 84
    • Te Velde, G.1    Baerends, E.J.2
  • 48
    • 0000216001 scopus 로고
    • Calculations were performed by using Slater-type orbitals with the BP86 functional as implemented in ADF2000.02 (E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 1973, 2, 41). The numerical integration procedure applied for the calculations is that of G. te Velde and E. J. Baerends (J. Comput. Phys. 1992, 99, 84). A triple-ξ Slater-Type-Orbital (STO) basis set with a polarization function was used for describing the valence electrons of Sn (4d 5s 5p), N (2s 2p), Cl (3s 3p) and Si (3s, 3p). A double-ξ STO basis set was used for C (2s 2p) and H, augmented by an extra polarization function. Electrons in lower shells were treated with ihe frozen core approximation. Energies of 3 were calculated by using the local density approximation (LDA) (S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200). The non-local exchange of A. D. Becke (A. D. Becke, Phys. Rev. A 1988, 38, 2398) and the non-local correlation correction of J. P. Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822) and the scalar relativistic correction (T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders, W. J. Ravenek, J. Phys. Chem. 1989, 93, 3050) were applied to the LDA density. NMR chemical shifts were calculated by using the implementation by G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1995, 99, 606.
    • (1980) Can. J. Phys. , vol.58 , pp. 1200
    • Vosko, S.H.1    Wilk, L.2    Nusair, M.3
  • 49
    • 0000350181 scopus 로고
    • Calculations were performed by using Slater-type orbitals with the BP86 functional as implemented in ADF2000.02 (E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 1973, 2, 41). The numerical integration procedure applied for the calculations is that of G. te Velde and E. J. Baerends (J. Comput. Phys. 1992, 99, 84). A triple-ξ Slater-Type-Orbital (STO) basis set with a polarization function was used for describing the valence electrons of Sn (4d 5s 5p), N (2s 2p), Cl (3s 3p) and Si (3s, 3p). A double-ξ STO basis set was used for C (2s 2p) and H, augmented by an extra polarization function. Electrons in lower shells were treated with ihe frozen core approximation. Energies of 3 were calculated by using the local density approximation (LDA) (S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200). The non-local exchange of A. D. Becke (A. D. Becke, Phys. Rev. A 1988, 38, 2398) and the non-local correlation correction of J. P. Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822) and the scalar relativistic correction (T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders, W. J. Ravenek, J. Phys. Chem. 1989, 93, 3050) were applied to the LDA density. NMR chemical shifts were calculated by using the implementation by G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1995, 99, 606.
    • (1988) Phys. Rev. A , vol.38 , pp. 2398
    • Becke, A.D.1
  • 50
    • 5944261746 scopus 로고
    • Calculations were performed by using Slater-type orbitals with the BP86 functional as implemented in ADF2000.02 (E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 1973, 2, 41). The numerical integration procedure applied for the calculations is that of G. te Velde and E. J. Baerends (J. Comput. Phys. 1992, 99, 84). A triple-ξ Slater-Type-Orbital (STO) basis set with a polarization function was used for describing the valence electrons of Sn (4d 5s 5p), N (2s 2p), Cl (3s 3p) and Si (3s, 3p). A double-ξ STO basis set was used for C (2s 2p) and H, augmented by an extra polarization function. Electrons in lower shells were treated with ihe frozen core approximation. Energies of 3 were calculated by using the local density approximation (LDA) (S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200). The non-local exchange of A. D. Becke (A. D. Becke, Phys. Rev. A 1988, 38, 2398) and the non-local correlation correction of J. P. Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822) and the scalar relativistic correction (T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders, W. J. Ravenek, J. Phys. Chem. 1989, 93, 3050) were applied to the LDA density. NMR chemical shifts were calculated by using the implementation by G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1995, 99, 606.
    • (1986) Phys. Rev. B , vol.33 , pp. 8822
    • Perdew, J.P.1
  • 51
    • 0344178884 scopus 로고
    • Calculations were performed by using Slater-type orbitals with the BP86 functional as implemented in ADF2000.02 (E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 1973, 2, 41). The numerical integration procedure applied for the calculations is that of G. te Velde and E. J. Baerends (J. Comput. Phys. 1992, 99, 84). A triple-ξ Slater-Type-Orbital (STO) basis set with a polarization function was used for describing the valence electrons of Sn (4d 5s 5p), N (2s 2p), Cl (3s 3p) and Si (3s, 3p). A double-ξ STO basis set was used for C (2s 2p) and H, augmented by an extra polarization function. Electrons in lower shells were treated with ihe frozen core approximation. Energies of 3 were calculated by using the local density approximation (LDA) (S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200). The non-local exchange of A. D. Becke (A. D. Becke, Phys. Rev. A 1988, 38, 2398) and the non-local correlation correction of J. P. Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822) and the scalar relativistic correction (T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders, W. J. Ravenek, J. Phys. Chem. 1989, 93, 3050) were applied to the LDA density. NMR chemical shifts were calculated by using the implementation by G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1995, 99, 606.
    • (1989) J. Phys. Chem. , vol.93 , pp. 3050
    • Ziegler, T.1    Tschinke, V.2    Baerends, E.J.3    Snijders, J.G.4    Ravenek, W.J.5
  • 52
    • 0000797458 scopus 로고
    • Calculations were performed by using Slater-type orbitals with the BP86 functional as implemented in ADF2000.02 (E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 1973, 2, 41). The numerical integration procedure applied for the calculations is that of G. te Velde and E. J. Baerends (J. Comput. Phys. 1992, 99, 84). A triple-ξ Slater-Type-Orbital (STO) basis set with a polarization function was used for describing the valence electrons of Sn (4d 5s 5p), N (2s 2p), Cl (3s 3p) and Si (3s, 3p). A double-ξ STO basis set was used for C (2s 2p) and H, augmented by an extra polarization function. Electrons in lower shells were treated with ihe frozen core approximation. Energies of 3 were calculated by using the local density approximation (LDA) (S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200). The non-local exchange of A. D. Becke (A. D. Becke, Phys. Rev. A 1988, 38, 2398) and the non-local correlation correction of J. P. Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822) and the scalar relativistic correction (T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders, W. J. Ravenek, J. Phys. Chem. 1989, 93, 3050) were applied to the LDA density. NMR chemical shifts were calculated by using the implementation by G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1995, 99, 606.
    • (1995) J. Phys. Chem. , vol.99 , pp. 606
    • Schreckenbach, G.1    Ziegler, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.