메뉴 건너뛰기




Volumn 5, Issue , 2004, Pages

A generative-discriminative hybrid for sequential data classification

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; DATA PROCESSING; INFORMATION THEORY; MATHEMATICAL MODELS; OPTIMIZATION; PROBLEM SOLVING; VECTORS;

EID: 4544337757     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (9)

References (18)
  • 2
    • 0032644368 scopus 로고    scopus 로고
    • An hmm based approach for off-line unconstrained handwritten word modeling and recognition
    • A. El-Yacoubi, M. Gilloux, R. Sabourin, and C. Y. Suen, "An hmm based approach for off-line unconstrained handwritten word modeling and recognition," IEEE Trans. PAMI., vol. 21, no. 8, pp. 752-760, 1999.
    • (1999) IEEE Trans. PAMI , vol.21 , Issue.8 , pp. 752-760
    • El-Yacoubi, A.1    Gilloux, M.2    Sabourin, R.3    Suen, C.Y.4
  • 3
    • 0024610919 scopus 로고
    • A tutorial on hidden markov models and selected application in speech recognition
    • L. R. Rabiner, "A tutorial on hidden markov models and selected application in speech recognition," Proc. of IEEE, vol. 77, no. 2, pp. 257-286, 1989.
    • (1989) Proc. of IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 4
    • 4544257435 scopus 로고    scopus 로고
    • Hybrid generative-discriminative models for speech and speaker recognition
    • IDIAP, March
    • L. Quan and S. Bengio, "Hybrid generative-discriminative models for speech and speaker recognition," Tech. Rep., IDIAP, March 2002.
    • (2002) Tech. Rep.
    • Quan, L.1    Bengio, S.2
  • 5
    • 0022890536 scopus 로고
    • Maximum mutual information estimation of hidden markov model parameters for speech recognition
    • Tokyo
    • L. Bahl, P. Brown, P. de Souza, and R. Mercer, "Maximum mutual information estimation of hidden markov model parameters for speech recognition," in Proc. of of ICASSP, Tokyo, 1986, pp. 49-52.
    • (1986) Proc. of of ICASSP , pp. 49-52
    • Bahl, L.1    Brown, P.2    De Souza, P.3    Mercer, R.4
  • 7
    • 0033884177 scopus 로고    scopus 로고
    • Maximum likelihood and minimum classification error rate factor analysis for automatic speech recognition
    • L. Saul and M. Rahim, "Maximum likelihood and minimum classification error rate factor analysis for automatic speech recognition," IEEE Trans. on Speech and Audio Processing, vol. 8, no. 2, pp. 115-125, 2000.
    • (2000) IEEE Trans. on Speech and Audio Processing , vol.8 , Issue.2 , pp. 115-125
    • Saul, L.1    Rahim, M.2
  • 8
    • 0002297358 scopus 로고
    • Hidden markov model induction by bayesian model merging
    • S. Hanson, J. Cowan, and C. Giles, Eds., Morgan Kaufmann
    • A. Stolcke and S. Omuhundro, "Hidden markov model induction by bayesian model merging," in Advances in Neural Information Processing 5, S. Hanson, J. Cowan, and C. Giles, Eds., pp. 11-18. Morgan Kaufmann, 1992.
    • (1992) Advances in Neural Information Processing , vol.5 , pp. 11-18
    • Stolcke, A.1    Omuhundro, S.2
  • 10
    • 2442594524 scopus 로고    scopus 로고
    • A model selection criterion for classification: Application to hmm topology optimization
    • A. Biem, "A model selection criterion for classification: Application to hmm topology optimization," in Proc. 17th ICDAR, Edinburgh, U.K, 2003, pp. 104-108.
    • (2003) Proc. 17th ICDAR, Edinburgh, U.K , pp. 104-108
    • Biem, A.1
  • 12
    • 59549087165 scopus 로고    scopus 로고
    • On generative vs. Discriminative classifiers: A comparison of logistic regression and naive bayes
    • A. Ng and M. Jordan, "On generative vs. discriminative classifiers: A comparison of logistic regression and naive bayes," in Proc. of Advances in Neural Information Processing 15, 2002.
    • (2002) Proc. of Advances in Neural Information Processing , vol.15
    • Ng, A.1    Jordan, M.2
  • 18
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale svm learning practical
    • B. Scholkopf, C. Burges, and A. Smola, Eds. MIT Press
    • T. Joachims, "Making large-scale svm learning practical," in Advances in Kernel Methods - Support Vector Learning, B. Scholkopf, C. Burges, and A. Smola, Eds. MIT Press, 1999.
    • (1999) Advances in Kernel Methods - Support Vector Learning
    • Joachims, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.