-
5
-
-
85036425325
-
-
D. J. Sypeck, H. N. G. Wadley, H. Bart-Smith, S. A. Koehler, and A. G. Evans, Review of Progress in Quantitative Nondestructive Evaluation, edited by D. O. Thompson and D. E. Chimenti (Plenum, New York, 1998), Vol. 17
-
D. J. Sypeck, H. N. G. Wadley, H. Bart-Smith, S. A. Koehler, and A. G. Evans, Review of Progress in Quantitative Nondestructive Evaluation, edited by D. O. Thompson and D. E. Chimenti (Plenum, New York, 1998), Vol. 17.
-
-
-
-
12
-
-
0343051399
-
-
D. Weaire, S. Hutzler, G. Verbist, and E. Peters, Adv. Chem. Phys. 102, 315 (1997).ADCPAA
-
(1997)
Adv. Chem. Phys.
, vol.102
, pp. 315
-
-
Weaire, D.1
Hutzler, S.2
Verbist, G.3
Peters, E.4
-
13
-
-
85036157146
-
-
Energy Research and Generation, Inc., Oakland, CA 94608
-
Energy Research and Generation, Inc., Oakland, CA 94608.
-
-
-
-
15
-
-
84956277018
-
-
S. Hutzler, G. Verbist, D. Weaire, and J. A. van der Steen, Europhys. Lett. 31, 497 (1995).EULEEJ
-
(1995)
Europhys. Lett.
, vol.31
, pp. 497
-
-
Hutzler, S.1
Verbist, G.2
Weaire, D.3
van der Steen, J.A.4
-
16
-
-
85036186901
-
-
Note that in order to begin the simulation, the initial profile was selected to obey the no-flux boundary condition (7) at [Formula Presented] and quickly transition to [Formula Presented] We chose [Formula Presented] where [Formula Presented] determines the width of the transition. Typically we chose [Formula Presented]
-
Note that in order to begin the simulation, the initial profile was selected to obey the no-flux boundary condition (7) at z=0 and quickly transition to α=1. We chose α(ζ,τ=0)=1+btanhζ(1-b)22b-12, where b determines the width of the transition. Typically we chose b=0.1.
-
-
-
-
17
-
-
85036358280
-
-
I. Mezić pointed out to us the connection with the Burgers equation. In fact, an almost identical mathematical problem can be found in P. G. Drazin and R. S. Johnson, Solitons: An Introduction (Cambridge University Press, Cambridge, 1989), p. 34, Q2.8
-
I. Mezić pointed out to us the connection with the Burgers equation. In fact, an almost identical mathematical problem can be found in P. G. Drazin and R. S. Johnson, Solitons: An Introduction (Cambridge University Press, Cambridge, 1989), p. 34, Q2.8.
-
-
-
-
18
-
-
85036142100
-
-
For computational purposes, “dry” corresponds to a small constant background value of [Formula Presented] This is physically reasonable since foams always have some nonzero liquid content
-
For computational purposes, “dry” corresponds to a small constant background value of α=10-8. This is physically reasonable since foams always have some nonzero liquid content.
-
-
-
-
20
-
-
84956069364
-
-
S. M. Troian, E. Herbolzheimer, S. A. Safran, and J. F. Joanny, Europhys. Lett. 10, 25 (1989).EULEEJ
-
(1989)
Europhys. Lett.
, vol.10
, pp. 25
-
-
Troian, S.M.1
Herbolzheimer, E.2
Safran, S.A.3
Joanny, J.F.4
|