메뉴 건너뛰기




Volumn 32, Issue 3 A, 2004, Pages 2053-2066

p-variation of strong Markov processes

Author keywords

Markov time; p variation; Strong Markov process; Transition probabilities

Indexed keywords


EID: 4544309330     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/009117904000000423     Document Type: Article
Times cited : (23)

References (21)
  • 4
    • 0006573347 scopus 로고
    • Gamma function and related functions
    • (M. Abramowitz and I. A. Stegun, eds.). Dover, New York
    • DAVIS, P. J. (1970). Gamma function and related functions. In Handbook of Mathematical Functions (M. Abramowitz and I. A. Stegun, eds.) 253-293. Dover, New York.
    • (1970) Handbook of Mathematical Functions , pp. 253-293
    • Davis, P.J.1
  • 5
    • 0000437721 scopus 로고
    • Fréchet differentiability, p-variation and uniform Donsker classes
    • DUDLEY, R. M. (1992). Fréchet differentiability, p-variation and uniform Donsker classes. Ann. Probab. 20 1968-1982.
    • (1992) Ann. Probab. , vol.20 , pp. 1968-1982
    • Dudley, R.M.1
  • 7
    • 0003935704 scopus 로고    scopus 로고
    • An introduction to p-variation and Young integrals
    • DUDLEY, R. M. and NORVAIŠA, R. (1998). An introduction to p-variation and Young integrals. Maphysto Lecture Notes 1. Available at www.maphysto.dk/cgi-bin/w3-msql/publications/index.html#LN.
    • (1998) Maphysto Lecture Notes , vol.1
    • Dudley, R.M.1    Norvaiša, R.2
  • 9
    • 4544360012 scopus 로고
    • Criteria of continuity and absence of discontinuity of the second kind for trajectories of a Markov process
    • DYNKIN, E. B. (1952). Criteria of continuity and absence of discontinuity of the second kind for trajectories of a Markov process. Izv. Akad. Nauk SSSR Ser. Mat. 16 563-572.
    • (1952) Izv. Akad. Nauk SSSR Ser. Mat. , vol.16 , pp. 563-572
    • Dynkin, E.B.1
  • 11
    • 84972557861 scopus 로고
    • Strong variation for the sample functions of a stable process
    • FRISTEDT, B. and TAYLOR, S. J. (1973). Strong variation for the sample functions of a stable process. Duke Math. J. 40 259-278.
    • (1973) Duke Math. J. , vol.40 , pp. 259-278
    • Fristedt, B.1    Taylor, S.J.2
  • 13
    • 0038152499 scopus 로고    scopus 로고
    • Lévy-type processes and pseudo-differential operators
    • (O. Barndorff-Nielsen, T. Mikosch and S. Resnick, eds.). Birkhäuser, Boston
    • JACOB, N. and SCHILLING, R. L. (2001). Lévy-type processes and pseudo-differential operators. In Lévy Processes: Theory and Applications (O. Barndorff-Nielsen, T. Mikosch and S. Resnick, eds.) 139-167. Birkhäuser, Boston.
    • (2001) Lévy Processes: Theory and Applications , pp. 139-167
    • Jacob, N.1    Schilling, R.L.2
  • 15
    • 0038490959 scopus 로고
    • Continuity properties of sample functions of Markov processes
    • KINNEY, J. R. (1953). Continuity properties of sample functions of Markov processes. Trans. Amer. Math. Soc. 74 280-302.
    • (1953) Trans. Amer. Math. Soc. , vol.74 , pp. 280-302
    • Kinney, J.R.1
  • 16
    • 0000312604 scopus 로고
    • Le mouvement Brownien plan
    • LÉVY, P. (1940). Le mouvement Brownien plan. Amer. J. Math. 62 487-550.
    • (1940) Amer. J. Math. , vol.62 , pp. 487-550
    • Lévy, P.1
  • 17
    • 0032347402 scopus 로고    scopus 로고
    • Differential equations driven by rough signals
    • LYONS, T. J. (1998). Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 215-310.
    • (1998) Rev. Mat. Iberoamericana , vol.14 , pp. 215-310
    • Lyons, T.J.1
  • 18
    • 0013336217 scopus 로고    scopus 로고
    • Stochastic integral equations without probability
    • MIKOSCH, T. and NORVAIŠA, R. (2000). Stochastic integral equations without probability. Bernoulli 6 401-434.
    • (2000) Bernoulli , vol.6 , pp. 401-434
    • Mikosch, T.1    Norvaiša, R.2
  • 19
    • 0002871754 scopus 로고
    • Processes that can be embedded in Brownian motion
    • MONROE, I. (1978). Processes that can be embedded in Brownian motion. Ann. Probab. 6 42-56.
    • (1978) Ann. Probab. , vol.6 , pp. 42-56
    • Monroe, I.1
  • 21
    • 84972573578 scopus 로고
    • Exact asymptotic estimates of Brownian path variation
    • TAYLOR, S. J. (1972). Exact asymptotic estimates of Brownian path variation. Duke Math. J. 39 219-241.
    • (1972) Duke Math. J. , vol.39 , pp. 219-241
    • Taylor, S.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.