메뉴 건너뛰기




Volumn 37, Issue 2, 2005, Pages 139-148

Threading splines through 3D channels

Author keywords

Computational geometry channels; Constrained curve fitting; Linear programming; SLEFE

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; COMPUTATIONAL GEOMETRY; LINEAR PROGRAMMING; OPTIMIZATION; PROBLEM SOLVING; THREAD CUTTING;

EID: 4544300733     PISSN: 00104485     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cad.2004.04.004     Document Type: Article
Times cited : (15)

References (19)
  • 1
    • 0032634246 scopus 로고    scopus 로고
    • Technical section-tribox bounds for three-dimensional objects
    • Crosnier A., Rossignac J.R. Technical Section - tribox bounds for three-dimensional objects. Comput Graph. 23:(3):1999;429-437.
    • (1999) Comput Graph , vol.23 , Issue.3 , pp. 429-437
    • Crosnier, A.1    Rossignac, J.R.2
  • 4
    • 0025478951 scopus 로고
    • Pythagorean hodographs
    • Farouki R.T., Sakkalis T. Pythagorean hodographs. IBM J Res Dev. 34:(5):1990;736-752.
    • (1990) IBM J Res Dev , vol.34 , Issue.5 , pp. 736-752
    • Farouki, R.T.1    Sakkalis, T.2
  • 5
    • 0022988967 scopus 로고
    • Surface algorithms using bounds on derivatives
    • Filip D., Magedson R., Markot R. Surface algorithms using bounds on derivatives. Comput Aid Geom Des. 3:(4):1986;295-311.
    • (1986) Comput Aid Geom Des , vol.3 , Issue.4 , pp. 295-311
    • Filip, D.1    Magedson, R.2    Markot, R.3
  • 6
  • 13
    • 21144446096 scopus 로고    scopus 로고
    • Efficient one-sided linearization of spline geometry
    • R.R. Martin. IMA
    • Peters J. Efficient one-sided linearization of spline geometry. Martin R.R. Mathematics of surfaces X. IMA. 2003;297-319.
    • (2003) Mathematics of Surfaces X , pp. 297-319
    • Peters, J.1
  • 15
    • 2942667942 scopus 로고    scopus 로고
    • Sleves for planar spline curves
    • in press
    • Peters J., Wu X. Sleves for planar spline curves. Comput Aid Geom Des. 2004;. (in press).
    • (2004) Comput Aid Geom Des
    • Peters, J.1    Wu, X.2
  • 17
  • 18
    • 85030869395 scopus 로고
    • Smallest enclosing disks (balls and ellipsoids)
    • Maurer H. Berlin: Springer
    • Welzl E. Smallest enclosing disks (balls and ellipsoids). Maurer H. Proceedings of New Results and New Trends in Computer Science. vol. 555:1991;359-370 Springer, Berlin.
    • (1991) Proceedings of New Results and New Trends in Computer Science , vol.555 , pp. 359-370
    • Welzl, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.