-
2
-
-
84990668575
-
A parallel algorithmic version of the local lemma
-
ALON, N. (1991). A parallel algorithmic version of the local lemma. Random Structures Algorithms 2 367-378.
-
(1991)
Random Structures Algorithms
, vol.2
, pp. 367-378
-
-
Alon, N.1
-
3
-
-
38249028223
-
Explicit construction of linear sized tolerant networks
-
ALON, N. and CHUNG, F. R. K. (1988). Explicit construction of linear sized tolerant networks. Discrete Math. 72 15-19.
-
(1988)
Discrete Math.
, vol.72
, pp. 15-19
-
-
Alon, N.1
Chung, F.R.K.2
-
5
-
-
84971791586
-
Local expansion of symmetrical graphs
-
BABAI, L. and SZEGEDY, M. (1992). Local expansion of symmetrical graphs. Combin. Probab. Comput. 1 1-11.
-
(1992)
Combin. Probab. Comput.
, vol.1
, pp. 1-11
-
-
Babai, L.1
Szegedy, M.2
-
8
-
-
84968486917
-
The evolution of random graphs
-
BOLLOBÁS, B. (1984). The evolution of random graphs. Trans. Amer. Math. Soc. 286 257-274.
-
(1984)
Trans. Amer. Math. Soc.
, vol.286
, pp. 257-274
-
-
Bollobás, B.1
-
11
-
-
0039040295
-
On the geometry of random Cantor sets and fractal percolation
-
FALCONER, K. J. and GRIMMETT, G. R. (1992). On the geometry of random Cantor sets and fractal percolation. J. Theoret. Probab. 5 465-485.
-
(1992)
J. Theoret. Probab.
, vol.5
, pp. 465-485
-
-
Falconer, K.J.1
Grimmett, G.R.2
-
12
-
-
13744252028
-
Every monotone graph property has a sharp threshold
-
FRIEDGUT, E. and KALAI, G. (1996). Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc. 124 2993-3002.
-
(1996)
Proc. Amer. Math. Soc.
, vol.124
, pp. 2993-3002
-
-
Friedgut, E.1
Kalai, G.2
-
13
-
-
0000292564
-
Random walks on graphs with a strong isoperimetric inequality
-
GERL, P. (1988). Random walks on graphs with a strong isoperimetric inequality. J. Theoret. Probab. 1 171-187.
-
(1988)
J. Theoret. Probab.
, vol.1
, pp. 171-187
-
-
Gerl, P.1
-
15
-
-
34249952953
-
Mean-field critical phenomena for percolation in high dimensions
-
HARA, T. and SLADE, G. (1990). Mean-field critical phenomena for percolation in high dimensions. Comm. Math. Physics 128 333-391.
-
(1990)
Comm. Math. Physics
, vol.128
, pp. 333-391
-
-
Hara, T.1
Slade, G.2
-
18
-
-
0002300497
-
Asymptotics in high dimension for percolation
-
(G. R. Grimmett and D. J. A. Welsh, eds.). Oxford Univ. Press
-
KESTEN, H. (1990). Asymptotics in high dimension for percolation. In Disorder in Physical Systems (G. R. Grimmett and D. J. A. Welsh, eds.) 219-240. Oxford Univ. Press.
-
(1990)
Disorder in Physical Systems
, pp. 219-240
-
-
Kesten, H.1
-
21
-
-
0034345423
-
Phase transitions on nonamenable graphs. Probabilistic techniques in equilibrium and nonequilibrium statistical physics
-
LYONS, R. (2000). Phase transitions on nonamenable graphs. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys. 41 1099-1126.
-
(2000)
J. Math. Phys.
, vol.41
, pp. 1099-1126
-
-
Lyons, R.1
-
22
-
-
0033233663
-
Indistinguishability of percolation clusters
-
LYONS, R. and SCHRAMM, O. (1999). Indistinguishability of percolation clusters. Ann. Probab. 27 1809-1836.
-
(1999)
Ann. Probab.
, vol.27
, pp. 1809-1836
-
-
Lyons, R.1
Schramm, O.2
-
23
-
-
23044535033
-
Percolation on finite Cayley graphs
-
Springer, Berlin
-
MALON, C. and PAK, I. (2002). Percolation on finite Cayley graphs. Lecture Notes in Comput. Sci. 2483 91-104. Springer, Berlin.
-
(2002)
Lecture Notes in Comput. Sci.
, vol.2483
, pp. 91-104
-
-
Malon, C.1
Pak, I.2
-
24
-
-
0036000527
-
Entropy waves, the zig-zag graph product, and new constant-degree expanders
-
REINGOLD, O., VADHAN, S. and WIGDERSON, A. (2002). Entropy waves, the zig-zag graph product, and new constant-degree expanders. Ann. of Math. (2) 155 157-187.
-
(2002)
Ann. of Math.
, vol.155
, Issue.2
, pp. 157-187
-
-
Reingold, O.1
Vadhan, S.2
Wigderson, A.3
-
25
-
-
0035730804
-
The contact process on finite trees
-
STACEY, A. (2001). The contact process on finite trees. Probab. Theory Related Fields 121 551-576.
-
(2001)
Probab. Theory Related Fields
, vol.121
, pp. 551-576
-
-
Stacey, A.1
-
26
-
-
0012609620
-
Tolerating linear number of faults in networks of bounded degree
-
UPFAL, E. (1994). Tolerating linear number of faults in networks of bounded degree. Inform. and Comput. 115 312-320.
-
(1994)
Inform. and Comput.
, vol.115
, pp. 312-320
-
-
Upfal, E.1
|