-
1
-
-
35248813648
-
Reviewing some machine learning concepts and methods. T
-
ICMC-USP
-
Baranauskas, J. A. and Monard, M. C. (2000a). Reviewing some machine learning concepts and methods. Technical Report 102, ICMC-USP. ftp://ftp.icmc.sc.usp.br/pub/BIBLIOTECA/rel_tec/Rt_102.ps.zip.
-
(2000)
Echnical Report
, vol.102
-
-
Baranauskas, J.A.1
Monard, M.C.2
-
2
-
-
4544378256
-
An unified overview of six supervised symbolic machine learning inducers
-
ICMC-USP
-
Baranauskas, J. A. and Monard, M. C. (2000b). An unified overview of six supervised symbolic machine learning inducers. Technical Report 103, ICMC-USP. ftp://ftp.icmc.sc.usp.br/pub/BIBLIOTECA/rel_tec/Rt_103.ps.zip.
-
(2000)
Technical Report
, vol.103
-
-
Baranauskas, J.A.1
Monard, M.C.2
-
3
-
-
84897785955
-
Applying one-sided selection to unbalanced datasets
-
Springer-Verlag. (in print)
-
Batista, G. E. A. P. A., Carvalho, A. C. P. L., and Monard, M. C. (2000). Applying one-sided selection to unbalanced datasets. In Proceedings of the Mexican Congress on Artificial Intelligence (MICAI), Lecture Notes in Artificial Intelligence. Springer-Verlag. (in print).
-
(2000)
Proceedings of the Mexican Congress on Artificial Intelligence (MICAI), Lecture Notes in Artificial Intelligence.
-
-
Batista, G.E.A.P.A.1
Carvalho, A.C.P.L.2
Monard, M.C.3
-
4
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer, E. and Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36:105-142.
-
(1999)
Machine Learning
, vol.36
, pp. 105-142
-
-
Bauer, E.1
Kohavi, R.2
-
6
-
-
0004158427
-
Arcing classifiers
-
Statistics Department, University of California
-
Breiman, L. (1996a). Arcing classifiers. Technical report, Statistics Department, University of California, ftp://ftp.stat.berkeley.edu/pub/users/ breiman/.
-
(1996)
Technical Report
-
-
Breiman, L.1
-
7
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996b). Bagging predictors. Machine Learning, 24(2):123-140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
8
-
-
0003619255
-
Bias, variance and arcing classifiers
-
Statistics Department, University of California
-
Breiman, L. (1996c), Bias, variance and arcing classifiers. Technical Report 460, Statistics Department, University of California.
-
(1996)
Technical Report
, vol.460
-
-
Breiman, L.1
-
9
-
-
85015191605
-
Rule induction with script C sign script N sign 2: Some recent improvements
-
Kodratoff, Y., editor, Springer-Verlag
-
Clark, P. and Boswell, R. (1991). Rule induction with script C sign script N sign 2: Some recent improvements. In Kodratoff, Y., editor, Proceedings of the 5th European Conference (EWSL 91), pages 151-163. Springer-Verlag.
-
(1991)
Proceedings of the 5th European Conference (EWSL 91)
, pp. 151-163
-
-
Clark, P.1
Boswell, R.2
-
10
-
-
0012017520
-
Induction in noise domains
-
Bratko, I. and Lavrač, N., editors, Wilmslow, UK. Sigma
-
Clark, P. and Niblett, T. (1987). Induction in noise domains. In Bratko, I. and Lavrač, N., editors, Proceedings of the Second European Working Session on Learning, pages 11-30, Wilmslow, UK. Sigma.
-
(1987)
Proceedings of the Second European Working Session on Learning
, pp. 11-30
-
-
Clark, P.1
Niblett, T.2
-
11
-
-
34249966007
-
The script C sign script N sign 2 induction algorithm
-
Clark, P. and Niblett, T. (1989). The script C sign script N sign 2 induction algorithm. Machine Learning, 3(4):261-283.
-
(1989)
Machine Learning
, vol.3
, Issue.4
, pp. 261-283
-
-
Clark, P.1
Niblett, T.2
-
13
-
-
1342282223
-
Data preprocessing and intelligent data analysis
-
Famili, A., Shen, W.-M., Weber, R., and Simoudis, E. (1997). Data preprocessing and intelligent data analysis. Intelligent Data Analysis, 1(1). http://www.elsevier.com/locate/ida.
-
(1997)
Intelligent Data Analysis
, vol.1
, Issue.1
-
-
Famili, A.1
Shen, W.-M.2
Weber, R.3
Simoudis, E.4
-
20
-
-
33744584654
-
Induction of decision trees
-
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1:81-106. Reprinted in Shavlik and Dieterich (eds.) Readings in Machine Learning.
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
23
-
-
0025448521
-
The strength of weak learnability
-
Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2):197-227.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
24
-
-
0004207406
-
-
O'Reilly & Associates, Inc.
-
Wall, L., Christiansen, T., and Schwartz, R. L. (1996). Programming Perl. O'Reilly & Associates, Inc.
-
(1996)
Programming Perl
-
-
Wall, L.1
Christiansen, T.2
Schwartz, R.L.3
-
25
-
-
0026692226
-
Stacked generalization
-
Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5:241-259.
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.H.1
|