메뉴 건너뛰기




Volumn 77, Issue 6, 2008, Pages

Bosons in one-dimensional incommensurate superlattices

Author keywords

[No Author keywords available]

Indexed keywords

CLARIFICATION; COMPUTER NETWORKS; CONCENTRATION (PROCESS); HAMILTONIANS; HUBBARD MODEL; LOCAL DENSITY APPROXIMATION; ONE DIMENSIONAL; PHASE BEHAVIOR; SET THEORY;

EID: 45249086810     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.77.063605     Document Type: Article
Times cited : (121)

References (60)
  • 1
    • 0002253954 scopus 로고
    • PRPLCM 0370-1573 10.1016/0370-1573(74)90029-5
    • D. J. Thouless, Phys. Rep., Phys. Lett. PRPLCM 0370-1573 10.1016/0370-1573(74)90029-5 13, 93 (1974).
    • (1974) Phys. Rep., Phys. Lett. , vol.13 , pp. 93
    • Thouless, D.J.1
  • 2
    • 0001366191 scopus 로고
    • RPPHAG 0034-4885 10.1088/0034-4885/56/12/001
    • B. Kramer and A. MacKinnon, Rep. Prog. Phys. RPPHAG 0034-4885 10.1088/0034-4885/56/12/001 56, 1469 (1993).
    • (1993) Rep. Prog. Phys. , vol.56 , pp. 1469
    • Kramer, B.1    MacKinnon, A.2
  • 3
    • 0006944356 scopus 로고
    • JCOMEL 0953-8984 10.1088/0953-8984/2/38/004
    • D. K. K. Lee and J. M. F. Gunn, J. Phys.: Condens. Matter JCOMEL 0953-8984 10.1088/0953-8984/2/38/004 2, 7753 (1990).
    • (1990) J. Phys.: Condens. Matter , vol.2 , pp. 7753
    • Lee, D.K.K.1    Gunn, J.M.F.2
  • 4
    • 84956109971 scopus 로고
    • EULEEJ 0295-5075 10.1209/0295-5075/3/12/007
    • T. Giamarchi and H. J. Schulz, Europhys. Lett. EULEEJ 0295-5075 10.1209/0295-5075/3/12/007 3, 1287 (1987)
    • (1987) Europhys. Lett. , vol.3 , pp. 1287
    • Giamarchi, T.1    Schulz, H.J.2
  • 5
    • 8644272071 scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.37.325
    • T. Giamarchi and H. J. Schulz, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.37.325 37, 325 (1988).
    • (1988) Phys. Rev. B , vol.37 , pp. 325
    • Giamarchi, T.1    Schulz, H.J.2
  • 13
    • 0001032458 scopus 로고
    • PLRBAQ 0556-2805 10.1103/PhysRevB.14.2239
    • D. R. Hofstadter, Phys. Rev. B PLRBAQ 0556-2805 10.1103/PhysRevB.14.2239 14, 2239 (1976).
    • (1976) Phys. Rev. B , vol.14 , pp. 2239
    • Hofstadter, D.R.1
  • 15
    • 0000532658 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.50.1870
    • M. Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.50.1870 50, 1870 (1983).
    • (1983) Phys. Rev. Lett. , vol.50 , pp. 1870
    • Kohmoto, M.1    Kadanoff, L.P.2    Tang, C.3
  • 17
    • 0000236174 scopus 로고
    • PRPLCM 0370-1573 10.1016/0370-1573(85)90088-2
    • J. B. Sokoloff, Phys. Rep. PRPLCM 0370-1573 10.1016/0370-1573(85)90088-2 126, 189 (1985).
    • (1985) Phys. Rep. , vol.126 , pp. 189
    • Sokoloff, J.B.1
  • 18
    • 33745030643 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.73.063610
    • A. M. Rey, I. I. Satija, and C. W. Clark, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.73.063610 73, 063610 (2006)
    • (2006) Phys. Rev. A , vol.73 , pp. 063610
    • Rey, A.M.1    Satija, I.I.2    Clark, C.W.3
  • 19
    • 33847231342 scopus 로고    scopus 로고
    • LAPHEJ 1054-660X 10.1134/S1054660X07020260
    • A. M. Rey, C. W. Clark, and I. I. Satija, Laser Phys. LAPHEJ 1054-660X 10.1134/S1054660X07020260 17, 205 (2007).
    • (2007) Laser Phys. , vol.17 , pp. 205
    • Rey, A.M.1    Clark, C.W.2    Satija, I.I.3
  • 20
    • 33646348180 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.73.041609
    • V. W. Scarola and S. Das Sarma, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.73.041609 73, 041609 (R) (2006).
    • (2006) Phys. Rev. A , vol.73 , pp. 041609
    • Scarola, V.W.1    Das Sarma, S.2
  • 23
    • 85019466914 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.80.4355
    • N. V. Prokof'ev and B. V. Svistunov, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.80.4355 80, 4355 (1998).
    • (1998) Phys. Rev. Lett. , vol.80 , pp. 4355
    • Prokof'Ev, N.V.1    Svistunov, B.V.2
  • 27
  • 29
    • 0008417829 scopus 로고
    • ANPYA2 0003-3804 10.1016/0003-4916(61)90115-4
    • E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. ANPYA2 0003-3804 10.1016/0003-4916(61)90115-4 16, 407 (1961).
    • (1961) Ann. Phys. , vol.16 , pp. 407
    • Lieb, E.1    Schultz, T.2    Mattis, D.3
  • 30
    • 0000715040 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.59.R14157
    • A. W. Sandvik, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.59.R14157 59, R14157 (1999)
    • (1999) Phys. Rev. B , vol.59 , pp. 14157
    • Sandvik, A.W.1
  • 31
    • 0037526837 scopus 로고    scopus 로고
    • PLEEE8 1063-651X 10.1103/PhysRevE.67.046701
    • O. F. Syljuåsen, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.67. 046701 67, 046701 (2003).
    • (2003) Phys. Rev. e , vol.67 , pp. 046701
    • Syljuåsen, O.F.1
  • 32
    • 18344383012 scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.36.8343
    • E. L. Pollock and D. M. Ceperley, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.36.8343 36, 8343 (1987).
    • (1987) Phys. Rev. B , vol.36 , pp. 8343
    • Pollock, E.L.1    Ceperley, D.M.2
  • 33
  • 34
    • 3142552641 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.69.053612
    • M. Rigol and A. Muramatsu, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.69.053612 69, 053612 (2004);
    • (2004) Phys. Rev. A , vol.69 , pp. 053612
    • Rigol, M.1    Muramatsu, A.2
  • 35
    • 10644224497 scopus 로고    scopus 로고
    • OPCOB8 0030-4018 10.1016/j.optcom.2004.10.040
    • M. Rigol and A. Muramatsu, Opt. Commun. OPCOB8 0030-4018 10.1016/j.optcom.2004.10.040 243, 33 (2004).
    • (2004) Opt. Commun. , vol.243 , pp. 33
    • Rigol, M.1    Muramatsu, A.2
  • 36
    • 45249117924 scopus 로고    scopus 로고
    • We note that the definition, Eq. 6, for the momentum distribution is strongly dependent on the considered size L in the case of a trapped system, where all the particles are confined in a finite region of space and L can far exceed this region. Throughout the paper we specify the size of the overall lattice used to host the trapped system, and in any case this size has always been chosen so as to be of the order of the trapped atomic cloud.
    • We note that the definition, Eq. 6, for the momentum distribution is strongly dependent on the considered size L in the case of a trapped system, where all the particles are confined in a finite region of space and L can far exceed this region. Throughout the paper we specify the size of the overall lattice used to host the trapped system, and in any case this size has always been chosen so as to be of the order of the trapped atomic cloud.
  • 38
    • 45249114219 scopus 로고    scopus 로고
    • The change from periodic to antiperiodic boundary conditions can always be absorbed into the twist of π of a single bond in the Hamiltonian, as shown in Eq. 4.
    • The change from periodic to antiperiodic boundary conditions can always be absorbed into the twist of π of a single bond in the Hamiltonian, as shown in Eq. 4.
  • 39
    • 0008135999 scopus 로고
    • JPSOAW 0022-3719 10.1088/0022-3719/5/8/007
    • J. T. Edwards and D. J. Thouless, J. Phys. C JPSOAW 0022-3719 10.1088/0022-3719/5/8/007 5, 807 (1972).
    • (1972) J. Phys. C , vol.5 , pp. 807
    • Edwards, J.T.1    Thouless, D.J.2
  • 41
    • 0001572928 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.61.012474
    • T. D. Kühner, S. R. White, and H. Monien, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.61.012474 61, 12474 (2000).
    • (2000) Phys. Rev. B , vol.61 , pp. 12474
    • Kühner, T.D.1    White, S.R.2    Monien, H.3
  • 42
    • 45249104714 scopus 로고    scopus 로고
    • We notice that the plateaus emerging from the QMC and random-atomic-limit calculation are also observed in the hard-core limit; see Fig. 1. Nonetheless, the width of the plateaus appears to be significantly reduced in the soft-core case (with J/U=0.04) with respect to the hard-core one for the same ratio of V2 /J.
    • We notice that the plateaus emerging from the QMC and random-atomic-limit calculation are also observed in the hard-core limit; see Fig. 1. Nonetheless, the width of the plateaus appears to be significantly reduced in the soft-core case (with J/U=0.04) with respect to the hard-core one for the same ratio of V2 /J.
  • 43
    • 0001202631 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.53.2691
    • J. K. Freericks and H. Monien, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.53.2691 53, 2691 (1996).
    • (1996) Phys. Rev. B , vol.53 , pp. 2691
    • Freericks, J.K.1    Monien, H.2
  • 44
    • 33750209478 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.74.144418
    • T. Roscilde, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.74.144418 74, 144418 (2006).
    • (2006) Phys. Rev. B , vol.74 , pp. 144418
    • Roscilde, T.1
  • 45
    • 42749103353 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.70.053601
    • S. Bergkvist, P. Henelius, and A. Rosengren, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.70.053601 70, 053601 (2004).
    • (2004) Phys. Rev. A , vol.70 , pp. 053601
    • Bergkvist, S.1    Henelius, P.2    Rosengren, A.3
  • 47
    • 45249100260 scopus 로고    scopus 로고
    • In fact, Δ Ep-h overestimates in principle the interaction energy, because it contains the interaction of an extra particle with a background of N particles, instead of N-1 as in a system with fixed particle number N.
    • In fact, Δ Ep-h overestimates in principle the interaction energy, because it contains the interaction of an extra particle with a background of N particles, instead of N-1 as in a system with fixed particle number N.
  • 48
    • 45249121062 scopus 로고    scopus 로고
    • In this respect it is worth noticing that, in the bulk system, low-energy particle-hole excitations can correspond to the transfer of a quasiparticle between two arbitrarily distant points. This is best understood in the classical limit J→0, where low-energy particle-hole excitations simply correspond to displacing a particle between two sites at quasidegenerate values of the local chemical potential. The periodicity of a truly incommensurate local chemical potential is by definition infinity, so that pairs of sites which are closest in energies can find themselves at opposite ends of the system. Nonetheless, other accidental, nonsystematic quasidegeneracies at shorter distances (from the quasiperiod up) can be expected, either associated with the external potential alone (possibly including the trapping one) or with the sum of the potential and of the interparticle interactions.
    • In this respect it is worth noticing that, in the bulk system, low-energy particle-hole excitations can correspond to the transfer of a quasiparticle between two arbitrarily distant points. This is best understood in the classical limit J→0, where low-energy particle-hole excitations simply correspond to displacing a particle between two sites at quasidegenerate values of the local chemical potential. The periodicity of a truly incommensurate local chemical potential is by definition infinity, so that pairs of sites which are closest in energies can find themselves at opposite ends of the system. Nonetheless, other accidental, nonsystematic quasidegeneracies at shorter distances (from the quasiperiod up) can be expected, either associated with the external potential alone (possibly including the trapping one) or with the sum of the potential and of the interparticle interactions.
  • 49
  • 50
    • 45249105347 scopus 로고    scopus 로고
    • More quantitatively, a one-dimensional quasicondensate should behave as a Luttinger liquid, for which the coherent fraction n (k=0) scales with the number of particles as N1-K/2, where K is the Luttinger exponent; the well-known upper bound for K in a disordered potential, K<2/3, imposes that the coherent fraction cannot grow slower than N2/3. Hence finding a coherent fraction n (k=0) N2/3 is a strong indication of the absence of quasicondensation. In the considered example, we have N 127, N 2/3 25, and n (k=0) 2.2 (see Fig. 20).
    • More quantitatively, a one-dimensional quasicondensate should behave as a Luttinger liquid, for which the coherent fraction n (k=0) scales with the number of particles as N1-K/2, where K is the Luttinger exponent; the well-known upper bound for K in a disordered potential, K<2/3, imposes that the coherent fraction cannot grow slower than N2/3. Hence finding a coherent fraction n (k=0) N2/3 is a strong indication of the absence of quasicondensation. In the considered example, we have N 127, N 2/3 25, and n (k=0) 2.2 (see Fig. 20).
  • 52
    • 19244365335 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.70.013603
    • E. Altman, E. Demler, and M. D. Lukin, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.70.013603 70, 013603 (2004).
    • (2004) Phys. Rev. A , vol.70 , pp. 013603
    • Altman, E.1    Demler, E.2    Lukin, M.D.3
  • 54
    • 19644401234 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.70.033608
    • P. Buonsante and A. Vezzani, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.70.033608 70, 033608 (2004)
    • (2004) Phys. Rev. A , vol.70 , pp. 033608
    • Buonsante, P.1    Vezzani, A.2
  • 55
    • 27144509393 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.72.013614
    • P. Buonsante and A. Vezzani, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.72.013614 72, 013614 (2005)
    • (2005) Phys. Rev. A , vol.72 , pp. 013614
    • Buonsante, P.1    Vezzani, A.2
  • 56
    • 4344709465 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.68.023604
    • R. Roth and K. Burnett, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.68.023604 68, 023604 (2003).
    • (2003) Phys. Rev. A , vol.68 , pp. 023604
    • Roth, R.1    Burnett, K.2
  • 57
    • 34247576791 scopus 로고    scopus 로고
    • NJOPFM 1367-2630 10.1088/1367-2630/9/4/103
    • P. Sengupta, A. Raghavan, and S. Haas, New J. Phys. NJOPFM 1367-2630 10.1088/1367-2630/9/4/103 9, 103 (2007).
    • (2007) New J. Phys. , vol.9 , pp. 103
    • Sengupta, P.1    Raghavan, A.2    Haas, S.3
  • 58
    • 45249120846 scopus 로고    scopus 로고
    • arXiv:0804.2769.
    • T. Roscilde, arXiv:0804.2769.
    • Roscilde, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.