-
1
-
-
8744232057
-
Edgeworth expansions of suitably normalized sample mean statistics for atomic Markov chains
-
Bertail P. and Clémençon S. (2004). Edgeworth expansions of suitably normalized sample mean statistics for atomic Markov chains. Probab. Theory Relat. Fields 130: 388-414
-
(2004)
Probab. Theory Relat. Fields
, vol.130
, pp. 388-414
-
-
Bertail, P.1
Clémençon, S.2
-
2
-
-
33846145358
-
Regenerative block bootstrap for Markov chains
-
4
-
Bertail P. and Clémençon S. (2006). Regenerative block bootstrap for Markov chains. Bernoulli 12(4): 689-712
-
(2006)
Bernoulli
, vol.12
, pp. 689-712
-
-
Bertail, P.1
Clémençon, S.2
-
3
-
-
45149133765
-
Second-order properties of regeneration-based bootstrap for atomic Markov chains
-
Bertail P. and Clémençon S. (2007). Second-order properties of regeneration-based bootstrap for atomic Markov chains. Test 16: 109-122
-
(2007)
Test
, vol.16
, pp. 109-122
-
-
Bertail, P.1
Clémençon, S.2
-
4
-
-
0000931301
-
On the validity of the formal Edgeworth expansion
-
Bhattacharya R.N. and Ghosh J.K. (1976). On the validity of the formal Edgeworth expansion. Ann. Stat. 6: 434-451
-
(1976)
Ann. Stat.
, vol.6
, pp. 434-451
-
-
Bhattacharya, R.N.1
Ghosh, J.K.2
-
6
-
-
0002785535
-
The Berry-Esseen theorem for functionals of discrete Markov chains
-
Bolthausen E. (1980). The Berry-Esseen theorem for functionals of discrete Markov chains. Z. Wahr. 54: 59-73
-
(1980)
Z. Wahr.
, vol.54
, pp. 59-73
-
-
Bolthausen, E.1
-
7
-
-
0001518789
-
The Berry-Esseén theorem for strongly mixing Harris recurrent Markov chains
-
Bolthausen E. (1982). The Berry-Esseén theorem for strongly mixing Harris recurrent Markov chains. Z. Wahr. 60: 283-289
-
(1982)
Z. Wahr.
, vol.60
, pp. 283-289
-
-
Bolthausen, E.1
-
8
-
-
34250277925
-
Estimate of the rate of convergence of distributions of additive functionals of a sequence of sums of independent random variables
-
3
-
Borisov I.S. (1978). Estimate of the rate of convergence of distributions of additive functionals of a sequence of sums of independent random variables. Siberian Math. J. 19(3): 371-383
-
(1978)
Siberian Math. J.
, vol.19
, pp. 371-383
-
-
Borisov, I.S.1
-
9
-
-
0011975680
-
Kac's moment formula and Feynman-Kac formula for additive functionals of a Markov process
-
Fitzsimmons P.J. and Pitman J. (1999). Kac's moment formula and Feynman-Kac formula for additive functionals of a Markov process. Stoc. Proc. Appl. 79: 117-134
-
(1999)
Stoc. Proc. Appl.
, vol.79
, pp. 117-134
-
-
Fitzsimmons, P.J.1
Pitman, J.2
-
12
-
-
0000299549
-
Asymptotic expansions for sums of weakly dependent random vectors
-
Götze F. and Hipp C. (1983). Asymptotic expansions for sums of weakly dependent random vectors. Z. Wahr. 64: 211-239
-
(1983)
Z. Wahr.
, vol.64
, pp. 211-239
-
-
Götze, F.1
Hipp, C.2
-
14
-
-
0002362078
-
Asymptotic expansions for strongly mixing Harris recurrent Markov chains
-
Jensen J.L. (1989). Asymptotic expansions for strongly mixing Harris recurrent Markov chains. Scand. J. Stat. 16: 47-63
-
(1989)
Scand. J. Stat.
, vol.16
, pp. 47-63
-
-
Jensen, J.L.1
-
16
-
-
0034419862
-
Malliavin calculus, geometric mixing, and expansion of diffusion functionals
-
Kusuoka S. and Yoshida N. (2000). Malliavin calculus, geometric mixing and expansion of diffusion functionals. Probab. Theory Relat. Fields 116: 457-484
-
(2000)
Probab. Theory Relat. Fields
, vol.116
, pp. 457-484
-
-
Kusuoka, S.1
Yoshida, N.2
-
17
-
-
0043069220
-
Limit theorems for Harris Markov chains, 1
-
2
-
Malinovskii V.K. (1987). Limit theorems for Harris Markov chains, 1. Theory Probab. Appl. 31(2): 269-285
-
(1987)
Theory Probab. Appl.
, vol.31
, pp. 269-285
-
-
Malinovskii, V.K.1
-
18
-
-
0009561632
-
Asymptotic expansions and bootstrapping distributions for dependent variables: A martingale approach
-
Mykland P.A. (1992). Asymptotic expansions and bootstrapping distributions for dependent variables: a martingale approach. Ann. Stat. 20: 623-654
-
(1992)
Ann. Stat.
, vol.20
, pp. 623-654
-
-
Mykland, P.A.1
-
21
-
-
11844257987
-
Asymptotic expansion of M-estimator over Wiener space
-
Sakamoto Y. and Yoshida N. (1998). Asymptotic expansion of M-estimator over Wiener space. Stat. Inference Stoch. Process. 1: 85-103
-
(1998)
Stat. Inference Stoch. Process.
, vol.1
, pp. 85-103
-
-
Sakamoto, Y.1
Yoshida, N.2
-
22
-
-
10444228627
-
Asymtotic expansion formulas for functionals of ε-Markov processes with a mixing property
-
3
-
Sakamoto Y. and Yoshida N. (2004). Asymtotic expansion formulas for functionals of ε-Markov processes with a mixing property. Ann. Inst. Stat. Math. 56(3): 545-597
-
(2004)
Ann. Inst. Stat. Math.
, vol.56
, pp. 545-597
-
-
Sakamoto, Y.1
Yoshida, N.2
-
24
-
-
45149089127
-
On lower bounds for mixing coefficients of Markov diffusions
-
Springer Berlin
-
Veretennikov A.Yu. (2006). On lower bounds for mixing coefficients of Markov diffusions. In: Stoyanov, Y.M., Kabanov, J.M. and Lipster, R. (eds) From Stochastic Calculus to Mathematical Finance., pp 623-633. Springer, Berlin
-
(2006)
From Stochastic Calculus to Mathematical Finance.
, pp. 623-633
-
-
Veretennikov, A.Yu.1
Stoyanov, Y.M.2
Kabanov, J.M.3
Lipster, R.4
-
25
-
-
4043162104
-
Partial mixing and Edgeworth expansion
-
Yoshida N. (2004). Partial mixing and Edgeworth expansion. Probab. Theory Relat. Fields 129: 559-624
-
(2004)
Probab. Theory Relat. Fields
, vol.129
, pp. 559-624
-
-
Yoshida, N.1
|