메뉴 건너뛰기




Volumn 21, Issue 6, 2008, Pages 1339-1347

Gap sequence, Lipschitz equivalence and box dimension of fractal sets

Author keywords

[No Author keywords available]

Indexed keywords


EID: 45149097413     PISSN: 09517715     EISSN: 13616544     Source Type: Journal    
DOI: 10.1088/0951-7715/21/6/011     Document Type: Article
Times cited : (32)

References (13)
  • 1
    • 84962994650 scopus 로고
    • On the complementary intervals of a linear closed set of zero Lebesgue measure
    • Besicovitch A S and Taylor S J 1954 On the complementary intervals of a linear closed set of zero Lebesgue measure J. Lond. Math. Soc. 29 449-59
    • (1954) J. Lond. Math. Soc. , vol.29 , pp. 449-459
    • Besicovitch, A.S.1    Taylor, S.J.2
  • 3
    • 0000786895 scopus 로고
    • On the Minsowski measurability of fractals
    • Falconer K J 1995 On the Minsowski measurability of fractals Proc. Am. Math. Soc. 123 1115-24
    • (1995) Proc. Am. Math. Soc. , vol.123 , Issue.4 , pp. 1115-1124
    • Falconer, K.J.1
  • 5
    • 0038969916 scopus 로고
    • Classification of quasi-circles by Hausdorff dimension
    • Falconer K J and Marsh D T 1989 Classification of quasi-circles by Hausdorff dimension Nonlinearity 2 489-93
    • (1989) Nonlinearity , vol.2 , Issue.3 , pp. 489-493
    • Falconer, K.J.1    Marsh, D.T.2
  • 6
    • 84971845283 scopus 로고
    • On the Lipschitz equivalence of Cantor sets
    • Falconer K J and Marsh D T 1992 On the Lipschitz equivalence of Cantor sets Mathematika 39 223-33
    • (1992) Mathematika , vol.39 , pp. 223-233
    • Falconer, K.J.1    Marsh, D.T.2
  • 7
    • 0003176208 scopus 로고
    • The Riemann hypothesis and inverse spectral problems for fractal strings
    • Lapidus M L and Maier H 1995 The Riemann hypothesis and inverse spectral problems for fractal strings J. Lond. Math. Soc. 52 15-34
    • (1995) J. Lond. Math. Soc. , vol.52 , pp. 15-34
    • Lapidus, M.L.1    Maier, H.2
  • 8
    • 84963042079 scopus 로고
    • The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums
    • Lapidus M L and Pomerance C 1993 The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums Proc. Lond. Math. Soc. 66 41-69
    • (1993) Proc. Lond. Math. Soc. , vol.66 , pp. 41-69
    • Lapidus, M.L.1    Pomerance, C.2
  • 9
    • 84972500327 scopus 로고
    • The Hausdorff dimension of general Sierpiński carpetss
    • McMullen C 1984 The Hausdorff dimension of general Sierpiński carpetss Nagoya Math. J. 96 1-9
    • (1984) Nagoya Math. J. , vol.96 , pp. 1-9
    • McMullen, C.1
  • 10
    • 30544437821 scopus 로고    scopus 로고
    • Lipschitz equivalence of self-similar sets
    • Rao H, Ruan H J and Xi L F 2006 Lipschitz equivalence of self-similar sets C. R. Acad. Sci. Paris, Ser. I 342 191-6
    • (2006) C. R. Acad. Sci. Paris, Ser. , vol.342 , Issue.3 , pp. 191-196
    • Rao, H.1    Ruan, H.J.2    L F. Xi3
  • 11
    • 0001644251 scopus 로고
    • Douze définitions de la densité logarithmique
    • Tricot C 1981 Douze définitions de la densité logarithmique C. R. Acad. Sci. Paris, Ser. I 293 549-52
    • (1981) C. R. Acad. Sci. Paris, Ser. , vol.293 , pp. 549-552
    • Tricot, C.1
  • 12
    • 0141837067 scopus 로고    scopus 로고
    • Relations among Whitney sets, self-similar arcs and quasi-arcs
    • Wen Z Y and Xi L F 2003 Relations among Whitney sets, self-similar arcs and quasi-arcs Israel J. Math. 136 251-67
    • (2003) Israel J. Math. , vol.136 , Issue.1 , pp. 251-267
    • Wen, Z.Y.1    L F. Xi2
  • 13
    • 7544228211 scopus 로고    scopus 로고
    • Lipschitz equivalence of self-conformal sets
    • Xi L F 2004 Lipschitz equivalence of self-conformal sets J. Lond. Math. Soc. 70 369-82
    • (2004) J. Lond. Math. Soc. , vol.70 , Issue.2 , pp. 369-382
    • L F. Xi1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.