메뉴 건너뛰기




Volumn 91, Issue 2, 2008, Pages 154-164

Machine learning method for knowledge discovery experimented with otoneurological data

Author keywords

Knowledge discovery; Machine learning method; Otoneurology

Indexed keywords

DATA MINING; DECISION SUPPORT SYSTEMS; DISEASES; LEARNING SYSTEMS; NEUROLOGY;

EID: 44949250685     PISSN: 01692607     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cmpb.2008.03.003     Document Type: Article
Times cited : (17)

References (42)
  • 1
    • 27744492168 scopus 로고    scopus 로고
    • Prevalence of Menière's disease in general population of Southern Finland
    • Havia M., Kentala E., and Pyykkö I. Prevalence of Menière's disease in general population of Southern Finland. Otolaryngol. Head Neck Surg. 133 5 (2005) 762-768
    • (2005) Otolaryngol. Head Neck Surg. , vol.133 , Issue.5 , pp. 762-768
    • Havia, M.1    Kentala, E.2    Pyykkö, I.3
  • 3
    • 44949209817 scopus 로고    scopus 로고
    • E. Kentala, A Neurotologic Expert System for Vertigo and Characteristics of Six Otologic Diseases Involving Vertigo, Academic Dissertation, Department of Otorhinolaryngology, University of Helsinki, Finland, 1996.
    • E. Kentala, A Neurotologic Expert System for Vertigo and Characteristics of Six Otologic Diseases Involving Vertigo, Academic Dissertation, Department of Otorhinolaryngology, University of Helsinki, Finland, 1996.
  • 4
    • 44949191733 scopus 로고    scopus 로고
    • M. Havia, Menière's Disease Prevalence and Clinical Picture, Academic Dissertation, Department of Otorhinolaryngology, University of Helsinki, Finland, 2004.
    • M. Havia, Menière's Disease Prevalence and Clinical Picture, Academic Dissertation, Department of Otorhinolaryngology, University of Helsinki, Finland, 2004.
  • 5
    • 44949121956 scopus 로고    scopus 로고
    • Y. Auramo, Construction of An Expert System to Support Otoneurological Vertigo Diagnosis, Academic Dissertation, Department of Computer Sciences, University of Tampere, Finland, 1999.
    • Y. Auramo, Construction of An Expert System to Support Otoneurological Vertigo Diagnosis, Academic Dissertation, Department of Computer Sciences, University of Tampere, Finland, 1999.
  • 6
    • 84907107556 scopus 로고
    • An expert system for the computer-aided diagnosis of dizziness and vertigo
    • Auramo Y., Juhola M., and Pyykkö I. An expert system for the computer-aided diagnosis of dizziness and vertigo. Med. Inform. 18 (1993) 293-305
    • (1993) Med. Inform. , vol.18 , pp. 293-305
    • Auramo, Y.1    Juhola, M.2    Pyykkö, I.3
  • 7
    • 44949155743 scopus 로고    scopus 로고
    • Refining the knowledge base of an otoneurological expert system
    • Crespo J., Maojo V., and Martin F. (Eds), Springer, Berlin
    • Viikki K., and Juhola M. Refining the knowledge base of an otoneurological expert system. In: Crespo J., Maojo V., and Martin F. (Eds). Medical Data Analysis, Lecture Notes in Computer Science vol. 2199 (2001), Springer, Berlin 276-281
    • (2001) Medical Data Analysis, Lecture Notes in Computer Science , vol.2199 , pp. 276-281
    • Viikki, K.1    Juhola, M.2
  • 8
    • 44949144308 scopus 로고    scopus 로고
    • K. Viikki, Machine Learning on Otoneurological Data: Decision Trees for Vertigo Diseases, Academic Dissertation, Department of Computer Sciences, University of Tampere, Finland, 2002.
    • K. Viikki, Machine Learning on Otoneurological Data: Decision Trees for Vertigo Diseases, Academic Dissertation, Department of Computer Sciences, University of Tampere, Finland, 2002.
  • 13
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Mach. Learn. 1 (1986) 81-106
    • (1986) Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 15
    • 15944363863 scopus 로고    scopus 로고
    • Modelling of classification rules on metabolic patterns including machine learning and expert knowledge
    • Baumgartner C., Bohm C., and Baumgartner D. Modelling of classification rules on metabolic patterns including machine learning and expert knowledge. J. Biomed. Inf. 38 2 (2005) 89-98
    • (2005) J. Biomed. Inf. , vol.38 , Issue.2 , pp. 89-98
    • Baumgartner, C.1    Bohm, C.2    Baumgartner, D.3
  • 16
    • 35548975678 scopus 로고    scopus 로고
    • Feature selection and classification model construction on type 2 diabetic patients' data
    • Huang Y., McCullagh P., Black N., and Harper R. Feature selection and classification model construction on type 2 diabetic patients' data. Artif. Intell. Med. 41 3 (2007) 251-262
    • (2007) Artif. Intell. Med. , vol.41 , Issue.3 , pp. 251-262
    • Huang, Y.1    McCullagh, P.2    Black, N.3    Harper, R.4
  • 17
    • 7944229667 scopus 로고    scopus 로고
    • Assessing association rules and decision trees on analysis of diabetes data from the DiabCare program in France
    • Quentin-Trautvetter J., Devos P., Duhamel A., and Beuscart R. Assessing association rules and decision trees on analysis of diabetes data from the DiabCare program in France. Stud. Health Technol. Inf. 90 (2002) 557-561
    • (2002) Stud. Health Technol. Inf. , vol.90 , pp. 557-561
    • Quentin-Trautvetter, J.1    Devos, P.2    Duhamel, A.3    Beuscart, R.4
  • 19
    • 34247142000 scopus 로고    scopus 로고
    • Using artificial intelligence to bring evidence-based medicine a step closer to making the individual difference
    • Sissons B., Gray W.A., Bater A., and Morrey D. Using artificial intelligence to bring evidence-based medicine a step closer to making the individual difference. Med. Inform. Internet Med. 32 1 (2007) 11-18
    • (2007) Med. Inform. Internet Med. , vol.32 , Issue.1 , pp. 11-18
    • Sissons, B.1    Gray, W.A.2    Bater, A.3    Morrey, D.4
  • 20
    • 84860398257 scopus 로고    scopus 로고
    • Computer assisted information resources navigation
    • Karanikolas N.N., and Skourlas C. Computer assisted information resources navigation. Med. Inform. Internet Med. 25 2 (2000) 11-18
    • (2000) Med. Inform. Internet Med. , vol.25 , Issue.2 , pp. 11-18
    • Karanikolas, N.N.1    Skourlas, C.2
  • 21
    • 0345832339 scopus 로고    scopus 로고
    • Protein β-turn prediction using nearest neighbour method
    • Kim S. Protein β-turn prediction using nearest neighbour method. Bioinformatics 20 (2004) 40
    • (2004) Bioinformatics , vol.20 , pp. 40
    • Kim, S.1
  • 23
    • 33744535368 scopus 로고    scopus 로고
    • Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers
    • Mavroforakis M.E., Georgiou H.V., Dimitropoulos N., Cavouras D., and Theodoridis S. Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers. Artif. Intell. Med. 37 2 (2006) 145-162
    • (2006) Artif. Intell. Med. , vol.37 , Issue.2 , pp. 145-162
    • Mavroforakis, M.E.1    Georgiou, H.V.2    Dimitropoulos, N.3    Cavouras, D.4    Theodoridis, S.5
  • 24
    • 44949205795 scopus 로고    scopus 로고
    • R. Blanco, P. Larrañaga, I. Inza, B. Sierra, Selection of highly accurate genes for cancer classification by estimation of distribution algorithms, in: Workshop of Bayesian Models in Medicine, (held within 8th Conference on AI in Medicine in Europe), AIME2001, Cascais, Portugal, 2001, pp. 29-34.
    • R. Blanco, P. Larrañaga, I. Inza, B. Sierra, Selection of highly accurate genes for cancer classification by estimation of distribution algorithms, in: Workshop of Bayesian Models in Medicine, (held within 8th Conference on AI in Medicine in Europe), AIME2001, Cascais, Portugal, 2001, pp. 29-34.
  • 25
    • 33745594057 scopus 로고    scopus 로고
    • Combining multi-species genomic data for microRNA identification using a Naive-Bayes classifier
    • Yousef M., Nebozhyn M., Shatkay H., Kanterakis S., Showe L.C., and Showe M.K. Combining multi-species genomic data for microRNA identification using a Naive-Bayes classifier. Bioinformatics 22 11 (2006) 1325-1334
    • (2006) Bioinformatics , vol.22 , Issue.11 , pp. 1325-1334
    • Yousef, M.1    Nebozhyn, M.2    Shatkay, H.3    Kanterakis, S.4    Showe, L.C.5    Showe, M.K.6
  • 26
    • 36448982458 scopus 로고    scopus 로고
    • Naive-Bayes for microRNA target predictions machine learning for microRNA targets
    • Yousef M., Jung S., Kossenkov A.V., Showe L.C., and Showe M.K. Naive-Bayes for microRNA target predictions machine learning for microRNA targets. Bioinformatics 23 22 (2007) 2987-2992
    • (2007) Bioinformatics , vol.23 , Issue.22 , pp. 2987-2992
    • Yousef, M.1    Jung, S.2    Kossenkov, A.V.3    Showe, L.C.4    Showe, M.K.5
  • 27
    • 26044441615 scopus 로고    scopus 로고
    • Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS
    • Blanco R., Inza I., Merino M., Quiroga J., and Larrañaga P. Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS. J. Biomed. Inform. 38 (2005) 376-388
    • (2005) J. Biomed. Inform. , vol.38 , pp. 376-388
    • Blanco, R.1    Inza, I.2    Merino, M.3    Quiroga, J.4    Larrañaga, P.5
  • 28
    • 16244367427 scopus 로고    scopus 로고
    • A classifier based on the artificial neural network approach for cardiologic auscultation in pediatrics
    • Bhatikar S.R., DeGroff C., and Mahajan R.L. A classifier based on the artificial neural network approach for cardiologic auscultation in pediatrics. Artif. Intell. Med. 33 (2005) 251-260
    • (2005) Artif. Intell. Med. , vol.33 , pp. 251-260
    • Bhatikar, S.R.1    DeGroff, C.2    Mahajan, R.L.3
  • 29
    • 1942485317 scopus 로고    scopus 로고
    • The experimental study of the expert system for diagnosing unbalances by ANN and acoustic signals
    • Li W., Tsai Y.P., and Chiu C.L. The experimental study of the expert system for diagnosing unbalances by ANN and acoustic signals. J. Sound Vib. 272 1-2 (2004) 69-83
    • (2004) J. Sound Vib. , vol.272 , Issue.1-2 , pp. 69-83
    • Li, W.1    Tsai, Y.P.2    Chiu, C.L.3
  • 30
    • 34247543838 scopus 로고    scopus 로고
    • Using results of eye movement signal analysis in the neural network recognition of otoneurological patients
    • Juhola M., Aalto H., and Hirvonen T. Using results of eye movement signal analysis in the neural network recognition of otoneurological patients. Comput. Methods Programs Biomed. 86 (2007) 216-226
    • (2007) Comput. Methods Programs Biomed. , vol.86 , pp. 216-226
    • Juhola, M.1    Aalto, H.2    Hirvonen, T.3
  • 31
    • 0036303121 scopus 로고    scopus 로고
    • NETASA: neural network based prediction of solvent accessibility
    • Ahmad S., and Gromiha M.M. NETASA: neural network based prediction of solvent accessibility. Bioinformatics 18 6 (2002) 819-824
    • (2002) Bioinformatics , vol.18 , Issue.6 , pp. 819-824
    • Ahmad, S.1    Gromiha, M.M.2
  • 33
    • 0030087680 scopus 로고    scopus 로고
    • Modifying an expert system construction to pattern recognition solution
    • Auramo Y., and Juhola M. Modifying an expert system construction to pattern recognition solution. Artif. Intell. Med. 8 (1996) 15-21
    • (1996) Artif. Intell. Med. , vol.8 , pp. 15-21
    • Auramo, Y.1    Juhola, M.2
  • 34
    • 44949135730 scopus 로고    scopus 로고
    • K. Viikki, M. Juhola, E. Kentala, I. Pyykkö, Building training data for decision tree induction in the subspecialty of otoneurology, in: Medical Infobahn for Europe: Telematics in Health Care, Proceedings of the MIE2000 and GMDS2000 Congress -cd, Hannover, Germany, BMIG, Ismaning, Germany, 2000.
    • K. Viikki, M. Juhola, E. Kentala, I. Pyykkö, Building training data for decision tree induction in the subspecialty of otoneurology, in: Medical Infobahn for Europe: Telematics in Health Care, Proceedings of the MIE2000 and GMDS2000 Congress -cd, Hannover, Germany, BMIG, Ismaning, Germany, 2000.
  • 39
    • 33847257326 scopus 로고    scopus 로고
    • Evaluation and classification of otoneurological data with new data analysis methods based on machine learning
    • Siermala M., Juhola M., Laurikkala J., Iltanen K., Kentala E., and Pyykkö I. Evaluation and classification of otoneurological data with new data analysis methods based on machine learning. Inf. Sci. 177 (2007) 1963-1976
    • (2007) Inf. Sci. , vol.177 , pp. 1963-1976
    • Siermala, M.1    Juhola, M.2    Laurikkala, J.3    Iltanen, K.4    Kentala, E.5    Pyykkö, I.6
  • 40
    • 31344469893 scopus 로고    scopus 로고
    • Techniques for biased data distributions and variable classification with neural networks applied to otoneurological data
    • Siermala M., and Juhola M. Techniques for biased data distributions and variable classification with neural networks applied to otoneurological data. Comput. Methods Programs Biomed. 81 (2006) 128-136
    • (2006) Comput. Methods Programs Biomed. , vol.81 , pp. 128-136
    • Siermala, M.1    Juhola, M.2
  • 41
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A.L., and Langley P. Selection of relevant features and examples in machine learning. Artif. Intell. 97 (1997) 245-271
    • (1997) Artif. Intell. , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 42
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M., and Liu H. Feature selection for classification. Intell. Data Anal. 1 (1997) 131-156
    • (1997) Intell. Data Anal. , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.