메뉴 건너뛰기




Volumn 35, Issue 3, 2008, Pages 772-780

A reinforcement agent for object segmentation in ultrasound images

Author keywords

Image segmentation; Reinforcement learning; Ultrasound imaging

Indexed keywords

ACOUSTIC WAVES; ARCHITECTURAL DESIGN; COMPUTER NETWORKS; IMAGE PROCESSING; IMAGE SEGMENTATION; INTELLIGENT SYSTEMS; MATRIX ALGEBRA; REINFORCEMENT; REINFORCEMENT LEARNING; ULTRASONIC IMAGING; ULTRASONIC TRANSMISSION; ULTRASONICS;

EID: 44949248275     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.07.057     Document Type: Article
Times cited : (10)

References (31)
  • 2
    • 44949211392 scopus 로고    scopus 로고
    • Cancer Facts and Figures (2002). American Cancer Society. .
    • Cancer Facts and Figures (2002). American Cancer Society. .
  • 3
    • 8544284121 scopus 로고    scopus 로고
    • Prostate segmentation algorithm using dyadic wavelet transform and discrete dynamic contour
    • Chiu B., Freeman G.H., Salama M.M.A., and Fenster A. Prostate segmentation algorithm using dyadic wavelet transform and discrete dynamic contour. Physics in Medicine and Biology 49 (2004) 4943-4960
    • (2004) Physics in Medicine and Biology , vol.49 , pp. 4943-4960
    • Chiu, B.1    Freeman, G.H.2    Salama, M.M.A.3    Fenster, A.4
  • 5
    • 1642329942 scopus 로고    scopus 로고
    • Parametric shape modeling using deformable superellipses for prostate segmentation
    • Gong L., Pathak S., Haynor D., Cho P., and Kim Y. Parametric shape modeling using deformable superellipses for prostate segmentation. IEEE Transactions on Medical Imaging 23 (2004) 340-349
    • (2004) IEEE Transactions on Medical Imaging , vol.23 , pp. 340-349
    • Gong, L.1    Pathak, S.2    Haynor, D.3    Cho, P.4    Kim, Y.5
  • 7
    • 0027660635 scopus 로고
    • Using line correspondences in invariant signatures for curve recognition
    • Holt R.J., and Netravali A.N. Using line correspondences in invariant signatures for curve recognition. Image and Vision Computing 11 (1993) 440-446
    • (1993) Image and Vision Computing , vol.11 , pp. 440-446
    • Holt, R.J.1    Netravali, A.N.2
  • 10
    • 33645315838 scopus 로고    scopus 로고
    • Prostate segmentation by feature enhancement using domain knowledge and adaptive region based operations
    • Nanayakkara N.D., Samarabandu J., and Fenster A. Prostate segmentation by feature enhancement using domain knowledge and adaptive region based operations. Physics in Medicine and Biology 51 (2006) 1831-1848
    • (2006) Physics in Medicine and Biology , vol.51 , pp. 1831-1848
    • Nanayakkara, N.D.1    Samarabandu, J.2    Fenster, A.3
  • 13
    • 0026521021 scopus 로고
    • Segmenting ultrasound images of the prostate using neural networks
    • Prater J.S., and Richard W.D. Segmenting ultrasound images of the prostate using neural networks. Ultrasound Imaging 14 (1992) 159-185
    • (1992) Ultrasound Imaging , vol.14 , pp. 159-185
    • Prater, J.S.1    Richard, W.D.2
  • 16
    • 0141651804 scopus 로고    scopus 로고
    • Sahba, F., & Tizhoosh, H. R. (2003). Filter fusion for image enhancement using reinforcement learning, (pp. 847-850). CCECE03, May 2003.
    • Sahba, F., & Tizhoosh, H. R. (2003). Filter fusion for image enhancement using reinforcement learning, (pp. 847-850). CCECE03, May 2003.
  • 17
    • 33751269595 scopus 로고    scopus 로고
    • Sahba, F., Tizhoosh, H. R., & Salama, M. M. A. (2005a). Using reinforcement learning for filter fusion in image enhancement, In The fourth IASTED international conference on computational intelligence, July 2005 (pp. 262-266). Calgary, Canada.
    • Sahba, F., Tizhoosh, H. R., & Salama, M. M. A. (2005a). Using reinforcement learning for filter fusion in image enhancement, In The fourth IASTED international conference on computational intelligence, July 2005 (pp. 262-266). Calgary, Canada.
  • 18
    • 27644557394 scopus 로고    scopus 로고
    • A coarse-to-fine approach to prostate boundary segmentation in ultrasound images
    • Sahba F., Tizhoosh H.R., and Salama M.M.A. A coarse-to-fine approach to prostate boundary segmentation in ultrasound images. Biomedical Engineering 58 4 (2005)
    • (2005) Biomedical Engineering , vol.58 , Issue.4
    • Sahba, F.1    Tizhoosh, H.R.2    Salama, M.M.A.3
  • 19
    • 44949175028 scopus 로고    scopus 로고
    • Sahba, F., Tizhoosh, H. R., & Salama, M. M. A. (2006a). A reinforcement learning framework for medical image segmentation, In The IEEE world congress on computational intelligence (WCCI), July 2006 (pp. 1238-1244). Vancouver, Canada.
    • Sahba, F., Tizhoosh, H. R., & Salama, M. M. A. (2006a). A reinforcement learning framework for medical image segmentation, In The IEEE world congress on computational intelligence (WCCI), July 2006 (pp. 1238-1244). Vancouver, Canada.
  • 20
    • 34548713309 scopus 로고    scopus 로고
    • Sahba, F., Tizhoosh, H. R., & Salama, M. M. A. (2006b). Increasing object recognition rate using reinforced segmentation, In The IEEE international conference on image processing (ICIP), October 2006, Atlanta.
    • Sahba, F., Tizhoosh, H. R., & Salama, M. M. A. (2006b). Increasing object recognition rate using reinforced segmentation, In The IEEE international conference on image processing (ICIP), October 2006, Atlanta.
  • 21
    • 0037941623 scopus 로고    scopus 로고
    • Segmentation of prostate boundaries from ultrasound images using statistical shape model
    • Shen D., Zhan Y., and Davatzikos C. Segmentation of prostate boundaries from ultrasound images using statistical shape model. IEEE Transactions on Medical Imaging 22 (2003) 539-551
    • (2003) IEEE Transactions on Medical Imaging , vol.22 , pp. 539-551
    • Shen, D.1    Zhan, Y.2    Davatzikos, C.3
  • 22
    • 4544335895 scopus 로고    scopus 로고
    • Shokri, M., & Tizhoosh, H. R. (2004). Q(λ)-based image thresholding, In: Canadian conference on computer and robot vision.
    • Shokri, M., & Tizhoosh, H. R. (2004). Q(λ)-based image thresholding, In: Canadian conference on computer and robot vision.
  • 25
    • 44949217598 scopus 로고    scopus 로고
    • Taylor, G. A. (2006). A reinforcement learning framework for parameter control in computer vision applications. In: Proceedings of the first Canadian conference on computer and robot vision.
    • Taylor, G. A. (2006). A reinforcement learning framework for parameter control in computer vision applications. In: Proceedings of the first Canadian conference on computer and robot vision.
  • 27
    • 0037508891 scopus 로고    scopus 로고
    • Semiautomatic three-dimensional segmentation of the prostate using twodimensional ultrasound images
    • Wang Y., Cardinal H., Downey D., and Fenster A. Semiautomatic three-dimensional segmentation of the prostate using twodimensional ultrasound images. Medical Physics 30 (2003) 887-897
    • (2003) Medical Physics , vol.30 , pp. 887-897
    • Wang, Y.1    Cardinal, H.2    Downey, D.3    Fenster, A.4
  • 30
    • 0036644611 scopus 로고    scopus 로고
    • Maximum entropy-based optimal threshold selection using deterministic reinforcement learning with controlled randomization
    • Yin P. Maximum entropy-based optimal threshold selection using deterministic reinforcement learning with controlled randomization. Signal Processing 82 (2002) 993-1006
    • (2002) Signal Processing , vol.82 , pp. 993-1006
    • Yin, P.1
  • 31
    • 0030216623 scopus 로고    scopus 로고
    • A survey on evaluation methods for image segmentation
    • Zhang Y.J. A survey on evaluation methods for image segmentation. Pattern Recognition Letter 29 (1996) 1335-1346
    • (1996) Pattern Recognition Letter , vol.29 , pp. 1335-1346
    • Zhang, Y.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.