-
1
-
-
0002081496
-
-
JAPIAU 0021-8979 10.1063/1.362349
-
K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.362349 79, 7983 (1996).
-
(1996)
J. Appl. Phys.
, vol.79
, pp. 7983
-
-
Vanheusden, K.1
Warren, W.L.2
Seager, C.H.3
Tallant, D.R.4
Voigt, J.A.5
Gnade, B.E.6
-
3
-
-
79956005526
-
-
APPLAB 0003-6951 10.1063/1.1448175
-
S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, and M. V. Swain, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.1448175 80, 956 (2002).
-
(2002)
Appl. Phys. Lett.
, vol.80
, pp. 956
-
-
Kucheyev, S.O.1
Bradby, J.E.2
Williams, J.S.3
Jagadish, C.4
Swain, M.V.5
-
5
-
-
0012672169
-
-
JPCBFK 1089-5647 10.1021/jp962918b
-
H. Rensmo, K. Keis, H. Lindstrolm, S. Soldergren, A. Solbrand, A. Hagfeldt, S.-E. Lindquist, L. N. Wang, and M. Muhammed, J. Phys. Chem. B JPCBFK 1089-5647 10.1021/jp962918b 101, 2598 (1997).
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 2598
-
-
Rensmo, H.1
Keis, K.2
Lindstrolm, H.3
Soldergren, S.4
Solbrand, A.5
Hagfeldt, A.6
Lindquist, S.-E.7
Wang, L.N.8
Muhammed, M.9
-
6
-
-
0142109458
-
-
APPLAB 0003-6951 10.1063/1.121620
-
Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.121620 72, 3270 (1998).
-
(1998)
Appl. Phys. Lett.
, vol.72
, pp. 3270
-
-
Tang, Z.K.1
Wong, G.K.L.2
Yu, P.3
Kawasaki, M.4
Ohtomo, A.5
Koinuma, H.6
Segawa, Y.7
-
7
-
-
0001269112
-
-
CATTEA 0920-5861 10.1016/0920-5861(95)00162-X
-
G. Busca, Catal. Today CATTEA 0920-5861 10.1016/0920-5861(95)00162-X 27, 457 (1996)
-
(1996)
Catal. Today
, vol.27
, pp. 457
-
-
Busca, G.1
-
8
-
-
0004277521
-
-
2nd ed. Wiley, Weinham, Germany
-
K. H. Büchel, H. H. Moretto, and P. Woditsch, Industrial Inorganic Chemistry, 2nd ed. (Wiley, Weinham, Germany, 2000).
-
(2000)
Industrial Inorganic Chemistry
-
-
Büchel, K.H.1
Moretto, H.H.2
Woditsch, P.3
-
9
-
-
0032049094
-
-
MLETDJ 0167-577X 10.1016/S0167-577X(97)00215-2
-
P. Mitra, A. P. Chatterjee, and H. S. Maiti, Mater. Lett. MLETDJ 0167-577X 10.1016/S0167-577X(97)00215-2 35, 33 (1998)
-
(1998)
Mater. Lett.
, vol.35
, pp. 33
-
-
Mitra, P.1
Chatterjee, A.P.2
Maiti, H.S.3
-
10
-
-
0033704990
-
-
SABCEB 0925-4005 10.1016/S0925-4005(00)00381-6
-
J. Xu, Q. Pan, Y. Shun, and Z. Tian, Sens. Actuators B SABCEB 0925-4005 10.1016/S0925-4005(00)00381-6 66, 277 (2000).
-
(2000)
Sens. Actuators B
, vol.66
, pp. 277
-
-
Xu, J.1
Pan, Q.2
Shun, Y.3
Tian, Z.4
-
11
-
-
0001689903
-
-
JCTLA5 0021-9517 10.1016/0021-9517(62)90022-2
-
R. P. Eischens, W. A. Pliskin, and M. J. D. Low, J. Catal. JCTLA5 0021-9517 10.1016/0021-9517(62)90022-2 1, 180 (1962).
-
(1962)
J. Catal.
, vol.1
, pp. 180
-
-
Eischens, R.P.1
Pliskin, W.A.2
Low, M.J.D.3
-
12
-
-
0001042071
-
-
ACHRE4 0001-4842 10.1021/ar50067a002
-
R. J. Kokes, Acc. Chem. Res. ACHRE4 0001-4842 10.1021/ar50067a002 6, 226 (1973), and references therein.
-
(1973)
Acc. Chem. Res.
, vol.6
, pp. 226
-
-
Kokes, R.J.1
-
13
-
-
0012918333
-
-
JACSAT 0002-7863 10.1021/ja00276a010
-
A. B. Anderson and J. A. Nichols, J. Am. Chem. Soc. JACSAT 0002-7863 10.1021/ja00276a010 108, 4742 (1986).
-
(1986)
J. Am. Chem. Soc.
, vol.108
, pp. 4742
-
-
Anderson, A.B.1
Nichols, J.A.2
-
14
-
-
0033076673
-
-
SUSCAS 0039-6028 10.1016/S0039-6028(98)00750-X
-
P. Zapol, J. B. Jaffe, and A. C. Hess, Surf. Sci. SUSCAS 0039-6028 10.1016/S0039-6028(98)00750-X 422, 1 (1999)
-
(1999)
Surf. Sci.
, vol.422
, pp. 1
-
-
Zapol, P.1
Jaffe, J.B.2
Hess, A.C.3
-
15
-
-
0035811432
-
-
JPCBFK 1089-5647 10.1021/jp004627f
-
A. Wander and N. M. Harrison, J. Phys. Chem. B JPCBFK 1089-5647 10.1021/jp004627f 105, 6191 (2001).
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 6191
-
-
Wander, A.1
Harrison, N.M.2
-
16
-
-
0006943425
-
-
NUIMAL 0029-554X 10.1016/0029-554X(67)90492-2
-
K. Haberrecker, E. Mollwo, H. Schreiber, H. Hoinkes, H. Nahr, P. Lindner, and H. Wilsch, Nucl. Instrum. Methods NUIMAL 0029-554X 10.1016/0029-554X(67) 90492-2 57, 22 (1967)
-
(1967)
Nucl. Instrum. Methods
, vol.57
, pp. 22
-
-
Haberrecker, K.1
Mollwo, E.2
Schreiber, H.3
Hoinkes, H.4
Nahr, H.5
Lindner, P.6
Wilsch, H.7
-
17
-
-
0022183869
-
-
PSSFBP 0079-6816 10.1016/0079-6816(85)90004-8
-
W. Göpel, Prog. Surf. Sci. PSSFBP 0079-6816 10.1016/0079-6816(85) 90004-8 20, 9 (1985)
-
(1985)
Prog. Surf. Sci.
, vol.20
, pp. 9
-
-
Göpel, W.1
-
18
-
-
0002156672
-
-
edited by S. Yamauchi (Kodansha and Elsevier, Tokyo, Japan
-
N. Yamazoe and N. Miura, in Chemical Sensor Technology, edited by, S. Yamauchi, (Kodansha and Elsevier, Tokyo, Japan, 1992), Vol. 4, pp. 19-42.
-
(1992)
Chemical Sensor Technology
, vol.4
, pp. 19-42
-
-
Yamazoe, N.1
Miura, N.2
-
19
-
-
33244489155
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.266104
-
Y. Wang, B. Meyer, X. Yin, M. Kunat, D. Langenberg, F. Traeger, A. Birkner, and Ch. Wöll, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.266104 95, 266104 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 266104
-
-
Wang, Y.1
Meyer, B.2
Yin, X.3
Kunat, M.4
Langenberg, D.5
Traeger, F.6
Birkner, A.7
Wöll, Ch.8
-
21
-
-
0035827304
-
-
SCIEAS 0036-8075 10.1126/science.1060367
-
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science SCIEAS 0036-8075 10.1126/science.1060367 292, 1897 (2001)
-
(2001)
Science
, vol.292
, pp. 1897
-
-
Huang, M.H.1
Mao, S.2
Feick, H.3
Yan, H.4
Wu, Y.5
Kind, H.6
Weber, E.7
Russo, R.8
Yang, P.9
-
22
-
-
79956010166
-
-
APPLAB 0003-6951 10.1063/1.1518810
-
C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.1518810 81, 3648 (2002)
-
(2002)
Appl. Phys. Lett.
, vol.81
, pp. 3648
-
-
Lee, C.J.1
Lee, T.J.2
Lyu, S.C.3
Zhang, Y.4
Ruh, H.5
Lee, H.J.6
-
23
-
-
17944364470
-
-
APPLAB 0003-6951 10.1063/1.1883715
-
Z. Y. Fan and J. G. Lua, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.1883715 86, 123510 (2005).
-
(2005)
Appl. Phys. Lett.
, vol.86
, pp. 123510
-
-
Fan, Z.Y.1
Lua, J.G.2
-
24
-
-
0036575748
-
-
AFMDC6 1616-301X 10.1002/1616-3028(20020517)12:5<323::AID- ADFM323>3.0.CO;2-G
-
P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, Adv. Funct. Mater. AFMDC6 1616-301X 10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G 12, 323 (2002).
-
(2002)
Adv. Funct. Mater.
, vol.12
, pp. 323
-
-
Yang, P.1
Yan, H.2
Mao, S.3
Russo, R.4
Johnson, J.5
Saykally, R.6
Morris, N.7
Pham, J.8
He, R.9
Choi, H.J.10
-
25
-
-
3042817115
-
-
JCOMEL 0953-8984 10.1088/0953-8984/16/25/R01
-
Z. L. Wang, J. Phys.: Condens. Matter JCOMEL 0953-8984 10.1088/0953-8984/16/25/R01 16, R829 (2004).
-
(2004)
J. Phys.: Condens. Matter
, vol.16
, pp. 829
-
-
Wang, Z.L.1
-
26
-
-
0030190741
-
-
CMMSEM 0927-0256 10.1016/0927-0256(96)00008-0
-
G. Kresse and J. Furthmüller, Comput. Mater. Sci. CMMSEM 0927-0256 10.1016/0927-0256(96)00008-0 6, 15 (1996)
-
(1996)
Comput. Mater. Sci.
, vol.6
, pp. 15
-
-
Kresse, G.1
Furthmüller, J.2
-
27
-
-
2442537377
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.54.11169
-
G. Kresse and J. Furthmüller, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.54.11169 54, 11169 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 11169
-
-
Kresse, G.1
Furthmüller, J.2
-
28
-
-
0011236321
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.59.1758
-
G. Kresse and D. Joubert, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.59.1758 59, 1758 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 1758
-
-
Kresse, G.1
Joubert, D.2
-
29
-
-
44949223358
-
-
It is known that the LDA tends to slightly underestimate the lattice constant and overestimate the cohesive energy, while the generalized gradient approximation (GGA) corrects the cohesive energy but overcorrects the lattice constant. However, for the electronic structure calculations, both approximations yield similar results in essence. For instance, the energy band structures of ZnO (10 1̄ 0) surfaces with partial and full hydrogen adsorption calculated with the LDA are similar to those calculated with the GGA in Ref..
-
It is known that the LDA tends to slightly underestimate the lattice constant and overestimate the cohesive energy, while the generalized gradient approximation (GGA) corrects the cohesive energy but overcorrects the lattice constant. However, for the electronic structure calculations, both approximations yield similar results in essence. For instance, the energy band structures of ZnO (10 1̄ 0) surfaces with partial and full hydrogen adsorption calculated with the LDA are similar to those calculated with the GGA in Ref..
-
-
-
-
30
-
-
1842816907
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.13.5188
-
H. J. Monkhorst and J. D. Pack, Phys. Rev. B PLRBAQ 0556-2805 10.1103/PhysRevB.13.5188 13, 5188 (1976).
-
(1976)
Phys. Rev. B
, vol.13
, pp. 5188
-
-
Monkhorst, H.J.1
Pack, J.D.2
-
31
-
-
0037438010
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.67.035403
-
B. Meyer and D. Marx, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.67. 035403 67, 035403 (2003).
-
(2003)
Phys. Rev. B
, vol.67
, pp. 035403
-
-
Meyer, B.1
Marx, D.2
-
32
-
-
34047117725
-
-
SCIEAS 0036-8075 10.1126/science.1137848
-
K. Tomatsu, K. Nakatsuji, T. Iimori, Y. Takagi, H. Kusuhara, A. Ishii, and F. Komori, Science SCIEAS 0036-8075 10.1126/science.1137848 315, 1696 (2007).
-
(2007)
Science
, vol.315
, pp. 1696
-
-
Tomatsu, K.1
Nakatsuji, K.2
Iimori, T.3
Takagi, Y.4
Kusuhara, H.5
Ishii, A.6
Komori, F.7
-
33
-
-
44949232067
-
-
Binding energy is defined as Eb = [- Et (nanowire+H) + Et (nanowire) + Et (H atom)] /N (H)), where Et (H atom), Et (nanowire+H), and Et (nanowire), respectively, denote the total energies of isolated H atom, the nanowires with and without H, and the N (H) is the number of H atoms in one supercell.
-
Binding energy is defined as Eb = [- Et (nanowire+H) + Et (nanowire) + Et (H atom)] /N (H)), where Et (H atom), Et (nanowire+H), and Et (nanowire), respectively, denote the total energies of isolated H atom, the nanowires with and without H, and the N (H) is the number of H atoms in one supercell.
-
-
-
|