메뉴 건너뛰기




Volumn 77, Issue 6, 2008, Pages

Delay stabilization of rotating waves near fold bifurcation and application to all-optical control of a semiconductor laser

Author keywords

[No Author keywords available]

Indexed keywords

CONTROL SYSTEM ANALYSIS; FEEDBACK CONTROL; SEMICONDUCTOR LASERS; STABILIZATION;

EID: 44949200077     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.77.066207     Document Type: Article
Times cited : (44)

References (20)
  • 1
    • 84889283432 scopus 로고    scopus 로고
    • 2nd ed., edited by E. Schöll and Wiley-VCH, Weinheim, H. G. Schuster
    • Handbook of Chaos Control, 2nd ed., edited by, E. Schöll, and, H. G. Schuster, (Wiley-VCH, Weinheim, 2008).
    • (2008) Handbook of Chaos Control
  • 2
    • 4243489552 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.64.1196
    • E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.64.1196 64, 1196 (1990).
    • (1990) Phys. Rev. Lett. , vol.64 , pp. 1196
    • Ott, E.1    Grebogi, C.2    Yorke, J.A.3
  • 3
    • 34250315551 scopus 로고
    • PYLAAG 0375-9601 10.1016/0375-9601(92)90745-8
    • K. Pyragas, Phys. Lett. A PYLAAG 0375-9601 10.1016/0375-9601(92)90745-8 170, 421 (1992).
    • (1992) Phys. Lett. A , vol.170 , pp. 421
    • Pyragas, K.1
  • 6
    • 36749027616 scopus 로고    scopus 로고
    • PLEEE8 1063-651X 10.1103/PhysRevE.76.056214
    • C. M. Postlethwaite and M. Silber, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.76.056214 76, 056214 (2007).
    • (2007) Phys. Rev. e , vol.76 , pp. 056214
    • Postlethwaite, C.M.1    Silber, M.2
  • 8
    • 0003687338 scopus 로고
    • Applied Mathematical Sciences Vol. 112 (Springer-Verlag, Berlin
    • Y. Kuznetsov, in Elements of Applied Bifurcation Theory, Applied Mathematical Sciences Vol. 112 (Springer-Verlag, Berlin, 1995).
    • (1995) Elements of Applied Bifurcation Theory
    • Kuznetsov, Y.1
  • 9
    • 44949208893 scopus 로고    scopus 로고
    • edited by B. Krauskopf and D. Lenstra, AIP Conf. Proc. No. 548 (AIP, New York
    • Fundamental Issues of Nonlinear Laser Dynamics, edited by, B. Krauskopf, and, D. Lenstra, AIP Conf. Proc. No. 548 (AIP, New York, 2000).
    • (2000) Fundamental Issues of Nonlinear Laser Dynamics
  • 14
    • 0028466689 scopus 로고
    • OPCOB8 0030-4018 10.1016/0030-4018(94)90498-7
    • W. Lu and R. G. Harrison, Opt. Commun. OPCOB8 0030-4018 10.1016/0030-4018(94)90498-7 109, 457 (1994).
    • (1994) Opt. Commun. , vol.109 , pp. 457
    • Lu, W.1    Harrison, R.G.2
  • 16
    • 42749104961 scopus 로고    scopus 로고
    • PLEEE8 1063-651X 10.1103/PhysRevE.69.056221
    • S. Yanchuk, K. R. Schneider, and L. Recke, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.69.056221 69, 056221 (2004).
    • (2004) Phys. Rev. e , vol.69 , pp. 056221
    • Yanchuk, S.1    Schneider, K.R.2    Recke, L.3
  • 17
    • 44949210796 scopus 로고    scopus 로고
    • TW 330, Katholieke Universiteit Leuven
    • K. Engelborghs, T. Luzyanina, and G. Samaey, Technical Report No. TW 330, Katholieke Universiteit Leuven, 2001 (unpublished).
    • (2001)
    • Engelborghs, K.1    Luzyanina, T.2    Samaey, G.3
  • 19
    • 84889283432 scopus 로고    scopus 로고
    • 2nd ed., edited by E. Schöll and Wiley-VCH, Weinheim, H. G. Schuster
    • Handbook of Chaos Control, 2nd ed., edited by, E. Schöll, and, H. G. Schuster, (Wiley-VCH, Weinheim, 2008), Chap..
    • (2008) Handbook of Chaos Control
  • 20
    • 44949098824 scopus 로고    scopus 로고
    • Note that due to the rotational symmetry of the system, the rotating waves (a1 eiωt, n1, a2 eiωt, n2) are usually transformed into the family of equilibria (a1 eiθ, n1, a2 eiθ, n2), 0≤θ<2π in the rotating coordinate system. For these equilibria, it is meaningful to speak about their eigenvalues. These eigenvalues coincide with the Floquet exponents of the original time-periodic rotating waves. An additional zero eigenvalue of these equilibria appears due to the symmetry.
    • Note that due to the rotational symmetry of the system, the rotating waves (a1 eiωt, n1, a2 eiωt, n2) are usually transformed into the family of equilibria (a1 eiθ, n1, a2 eiθ, n2), 0≤θ<2π in the rotating coordinate system. For these equilibria, it is meaningful to speak about their eigenvalues. These eigenvalues coincide with the Floquet exponents of the original time-periodic rotating waves. An additional zero eigenvalue of these equilibria appears due to the symmetry.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.