메뉴 건너뛰기




Volumn 77, Issue 23, 2008, Pages

Electric and magnetic resonances in broadside coupled split-ring resonators: An extended mode-expansion theory

Author keywords

[No Author keywords available]

Indexed keywords


EID: 44949157193     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.77.235105     Document Type: Article
Times cited : (9)

References (36)
  • 1
    • 85010244173 scopus 로고
    • SOPUAP 0038-5670 10.1070/PU1968v010n04ABEH003699
    • V. C. Veselago, Sov. Phys. Usp. SOPUAP 0038-5670 10.1070/ PU1968v010n04ABEH003699 10, 509 (1968).
    • (1968) Sov. Phys. Usp. , vol.10 , pp. 509
    • Veselago, V.C.1
  • 3
    • 0035815370 scopus 로고    scopus 로고
    • SCIEAS 0036-8075 10.1126/science.1058847
    • R. A. Shelby, D. R. Smith, and S. Schultz, Science SCIEAS 0036-8075 10.1126/science.1058847 292, 77 (2001).
    • (2001) Science , vol.292 , pp. 77
    • Shelby, R.A.1    Smith, D.R.2    Schultz, S.3
  • 8
    • 37649027998 scopus 로고    scopus 로고
    • PLEEE8 1063-651X 10.1103/PhysRevE.65.036622
    • P. Markos and C. M. Soukoulis, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.65.036622 65, 036622 (2002).
    • (2002) Phys. Rev. e , vol.65 , pp. 036622
    • Markos, P.1    Soukoulis, C.M.2
  • 9
    • 29644447965 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.72.165102
    • Bogdan-Ioan Popa and S. A. Cummer, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.72.165102 72, 165102 (2005).
    • (2005) Phys. Rev. B , vol.72 , pp. 165102
    • Popa, B.1    Cummer, S.A.2
  • 17
    • 0037566949 scopus 로고    scopus 로고
    • PYLAAG 0375-9601 10.1016/S0375-9601(03)00494-8
    • C. R. Simovski and S. He, Phys. Lett. A PYLAAG 0375-9601 10.1016/S0375-9601(03)00494-8 311, 254 (2003).
    • (2003) Phys. Lett. a , vol.311 , pp. 254
    • Simovski, C.R.1    He, S.2
  • 18
    • 18344408115 scopus 로고    scopus 로고
    • RASCAD 0048-6604 10.1029/2003RS002898
    • C. R. Simovski and B. Sauviac, Radio Sci. RASCAD 0048-6604 10.1029/2003RS002898 39, RS2014 (2004).
    • (2004) Radio Sci. , vol.39 , pp. 2014
    • Simovski, C.R.1    Sauviac, B.2
  • 19
    • 4644311536 scopus 로고    scopus 로고
    • PYLAAG 0375-9601 10.1016/j.physleta.2004.07.032
    • E. Verney, B. Sauviac, and C. R. Simovski, Phys. Lett. A PYLAAG 0375-9601 10.1016/j.physleta.2004.07.032 331, 244 (2004).
    • (2004) Phys. Lett. a , vol.331 , pp. 244
    • Verney, E.1    Sauviac, B.2    Simovski, C.R.3
  • 20
    • 20144370307 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.71.121103
    • T. Koschny, L. Zhang, and C. M. Soukoulis, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.71.121103 71, 121103 (R) (2005).
    • (2005) Phys. Rev. B , vol.71 , pp. 121103
    • Koschny, T.1    Zhang, L.2    Soukoulis, C.M.3
  • 22
    • 36049013047 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.76.245115
    • J. D. Baena, L. Jelinek, and R. Marqués, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.76.245115 76, 245115 (2007).
    • (2007) Phys. Rev. B , vol.76 , pp. 245115
    • Baena, J.D.1    Jelinek, L.2    Marqués, R.3
  • 26
    • 33746054931 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.74.035419
    • L. Zhou and S. T. Chui, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.74.035419 74, 035419 (2006).
    • (2006) Phys. Rev. B , vol.74 , pp. 035419
    • Zhou, L.1    Chui, S.T.2
  • 27
    • 33846610629 scopus 로고    scopus 로고
    • APPLAB 0003-6951 10.1063/1.2431776
    • L. Zhou and S. T. Chui, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.2431776 90, 041903 (2007).
    • (2007) Appl. Phys. Lett. , vol.90 , pp. 041903
    • Zhou, L.1    Chui, S.T.2
  • 35
    • 0021401957 scopus 로고
    • IETPAK 0018-926X 10.1109/TAP.1984.1143308
    • C. M. Butler, IEEE Trans. Antennas Propag. IETPAK 0018-926X 10.1109/TAP.1984.1143308 AP-32, 226 (1984).
    • (1984) IEEE Trans. Antennas Propag. , vol.AP-32 , pp. 226
    • Butler, C.M.1
  • 36
    • 44949220930 scopus 로고    scopus 로고
    • note
    • We note that some previous analytical calculations (say, Ref.) predicted that the current distribution along a thin metallic strip should be a Maxwellian form in which the current density diverges on the edges of the metallic strip. For the case that we studied, as the wavelength we considered is much larger than the width of the ring, the current in a Maxwellian form is almost uniform in the strip except in the region very close to the edges (see Ref.), which is indeed the case found in our FDTD simulations. However, since our FDTD mesh is not dense enough, we failed to find the divergences near the edges (see Fig. 1). Nevertheless, we note that the uniform distribution that we took is still a valid (although quite rough) approximation of the true current distribution and yields good results of resonance frequencies as compared with FDTD simulations (see Fig. 2). The reason of such good agreement is also partly due to the fact that the resonance frequency is a variational quantity which does not depend much on the detailed forms of the current distribution.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.