메뉴 건너뛰기




Volumn 35, Issue 1-2, 2008, Pages 245-253

Using back-propagation to learn association rules for service personalization

Author keywords

Association rules; Back propagation neural network; Data mining model; Fuzzy membership degree

Indexed keywords

ASSOCIATION RULES; ASSOCIATIVE PROCESSING; BACKPROPAGATION; COMPUTER NETWORKS; CRACK PROPAGATION; CUSTOMER SATISFACTION; ELECTRONIC COMMERCE; METROPOLITAN AREA NETWORKS; NETWORK PROTOCOLS; NEURAL NETWORKS; SALES;

EID: 44949149283     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.06.035     Document Type: Article
Times cited : (9)

References (26)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • Adomavicius G., and Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17 6 (2005) 734-749
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 3
    • 44949142651 scopus 로고    scopus 로고
    • Agrawal, R., & Srikant, R. (Eds.), (1994). Fast algorithms for mining association rules in large databases. In Proceedings of the twentieth international conference on very large databases (pp. 478-499). Santiago, Chile.
    • Agrawal, R., & Srikant, R. (Eds.), (1994). Fast algorithms for mining association rules in large databases. In Proceedings of the twentieth international conference on very large databases (pp. 478-499). Santiago, Chile.
  • 4
    • 44949218881 scopus 로고    scopus 로고
    • Borgelt, C., & Kruse, R. (2002). Induction of association rules: Apriori implementation. In Proceedings of the fifteenth conference on computational statistics (pp. 395-400). Berlin, Germany.
    • Borgelt, C., & Kruse, R. (2002). Induction of association rules: Apriori implementation. In Proceedings of the fifteenth conference on computational statistics (pp. 395-400). Berlin, Germany.
  • 5
    • 84973857317 scopus 로고
    • ART2: Self-organization of stable category recognition codes for analog input patterns
    • Carpenter G.A., and Grossberg S.A. ART2: Self-organization of stable category recognition codes for analog input patterns. Applied Optics 26 (1987) 4919-4930
    • (1987) Applied Optics , vol.26 , pp. 4919-4930
    • Carpenter, G.A.1    Grossberg, S.A.2
  • 6
    • 0021776661 scopus 로고
    • A massively parallel architecture for a self-organizing neural pattern recognition machine
    • Carpenter G.A., and Grossberg S.A. A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing 37 (1987) 54-115
    • (1987) Computer Vision, Graphics, and Image Processing , vol.37 , pp. 54-115
    • Carpenter, G.A.1    Grossberg, S.A.2
  • 7
    • 0031346257 scopus 로고    scopus 로고
    • Chan, C.C., & Au, W. H. (1997). Mining fuzzy association rules. In Proceedings of the sixth international conference on information and knowledge management, (pp. 209-215). Las Vegas, NV, USA.
    • Chan, C.C., & Au, W. H. (1997). Mining fuzzy association rules. In Proceedings of the sixth international conference on information and knowledge management, (pp. 209-215). Las Vegas, NV, USA.
  • 10
    • 0036776464 scopus 로고    scopus 로고
    • A personalized recommender system based on web usage mining and decision tree induction
    • Cho Y.H., Kim J.K., and Kim S.H. A personalized recommender system based on web usage mining and decision tree induction. Expert Systems with Applications 23 3 (2002) 329-342
    • (2002) Expert Systems with Applications , vol.23 , Issue.3 , pp. 329-342
    • Cho, Y.H.1    Kim, J.K.2    Kim, S.H.3
  • 11
    • 0003585297 scopus 로고    scopus 로고
    • Han J., and Kamber M. (Eds), Morgan Kaufmann Publishers, San Francisco, CA
    • In: Han J., and Kamber M. (Eds). Data mining: Concepts and techniques (2001), Morgan Kaufmann Publishers, San Francisco, CA
    • (2001) Data mining: Concepts and techniques
  • 12
    • 3242783300 scopus 로고    scopus 로고
    • Mining skewed and sparse transaction data for personalized shopping recommendation
    • Hsu C.N., Chung H.H., and Huang H.S. Mining skewed and sparse transaction data for personalized shopping recommendation. Machine Learning 57 1-2 (2004) 35-59
    • (2004) Machine Learning , vol.57 , Issue.1-2 , pp. 35-59
    • Hsu, C.N.1    Chung, H.H.2    Huang, H.S.3
  • 13
    • 44949085114 scopus 로고    scopus 로고
  • 14
    • 44949088169 scopus 로고    scopus 로고
    • The application of grey model and back-propagation network to establish the alarm mechanism for the premium rate service
    • Huang Y.-P., and Hsieh W.-J. The application of grey model and back-propagation network to establish the alarm mechanism for the premium rate service. Journal of Grey System 6 2 (2003) 75-88
    • (2003) Journal of Grey System , vol.6 , Issue.2 , pp. 75-88
    • Huang, Y.-P.1    Hsieh, W.-J.2
  • 15
    • 0035747031 scopus 로고    scopus 로고
    • Huang, Y.-P., Ouyang, C.-P., Ke, Y.-H., & Lin, K. (2001). A fuzzy approach to fulfilling personalized service through association rules derived from large databases. In Proceedings of the IEEE international conference on fuzzy systems (pp. 272-275). Melbourne, Australia.
    • Huang, Y.-P., Ouyang, C.-P., Ke, Y.-H., & Lin, K. (2001). A fuzzy approach to fulfilling personalized service through association rules derived from large databases. In Proceedings of the IEEE international conference on fuzzy systems (pp. 272-275). Melbourne, Australia.
  • 16
    • 0036454086 scopus 로고    scopus 로고
    • Huang, Y.-P., Ke, Y.-H., Ouyang, C.-P., & Lin, K. (2002). A systematic method to design a fuzzy data mining model. In Proceedings of the IEEE international conference on fuzzy systems (pp. 896-901). Hawaii, USA.
    • Huang, Y.-P., Ke, Y.-H., Ouyang, C.-P., & Lin, K. (2002). A systematic method to design a fuzzy data mining model. In Proceedings of the IEEE international conference on fuzzy systems (pp. 896-901). Hawaii, USA.
  • 17
    • 17844390666 scopus 로고    scopus 로고
    • Collaborative filtering based on iterative principal component analysis
    • Kim D., and Yum B.J. Collaborative filtering based on iterative principal component analysis. Expert Systems with Applications 28 4 (2005) 823-830
    • (2005) Expert Systems with Applications , vol.28 , Issue.4 , pp. 823-830
    • Kim, D.1    Yum, B.J.2
  • 18
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen T. The self-organizing map. Proceedings of the IEEE 78 9 (1990) 1464-1480
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 19
    • 0036565197 scopus 로고    scopus 로고
    • Pincer-search: An efficient algorithm for discovering the maximum frequent set
    • Lin D.-I., and Kedem Z.M. Pincer-search: An efficient algorithm for discovering the maximum frequent set. IEEE Transactions on Knowledge and Data Engineering 14 3 (2002) 553-566
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.3 , pp. 553-566
    • Lin, D.-I.1    Kedem, Z.M.2
  • 22
    • 44949111952 scopus 로고    scopus 로고
    • Werbos, P. (1974). Beyond regression: New tool for prediction and analysis in the behavioral sciences. Ph.D. Thesis, Cambridge, MA: Harvard University.
    • Werbos, P. (1974). Beyond regression: New tool for prediction and analysis in the behavioral sciences. Ph.D. Thesis, Cambridge, MA: Harvard University.
  • 23
    • 0024124328 scopus 로고    scopus 로고
    • White, H. (1988). Economic prediction using neural networks: The case of IBM daily stock returns. In Proceedings of the IEEE international conference on neural networks (pp. 451-458). Houston, TX, USA.
    • White, H. (1988). Economic prediction using neural networks: The case of IBM daily stock returns. In Proceedings of the IEEE international conference on neural networks (pp. 451-458). Houston, TX, USA.
  • 24
    • 84947552204 scopus 로고    scopus 로고
    • Wur, S. Y., & Leu, Y. H. (1999). An effective Boolean algorithm for mining rules in large database. In Proceedings of the sixth international conference on database systems for advanced applications (pp. 179-186). Hsinchu, Taiwan.
    • Wur, S. Y., & Leu, Y. H. (1999). An effective Boolean algorithm for mining rules in large database. In Proceedings of the sixth international conference on database systems for advanced applications (pp. 179-186). Hsinchu, Taiwan.
  • 25
    • 17444380776 scopus 로고    scopus 로고
    • Mining interesting association rules and sequential patterns
    • Yen S.-J., and Lee Y.-S. Mining interesting association rules and sequential patterns. International Journal of Fuzzy Systems 6 4 (2004) 169-178
    • (2004) International Journal of Fuzzy Systems , vol.6 , Issue.4 , pp. 169-178
    • Yen, S.-J.1    Lee, Y.-S.2
  • 26
    • 0031336150 scopus 로고    scopus 로고
    • Zu, Y. H., Lu, Y. C., & Shi, C. Y. (1997). Combining neural network, genetic algorithm and symbolic learning approach to discover knowledge from databases. In Proceedings of IEEE international conference on systems, man, and cybernetics (pp. 4388-4393). Orlando, FL, USA.
    • Zu, Y. H., Lu, Y. C., & Shi, C. Y. (1997). Combining neural network, genetic algorithm and symbolic learning approach to discover knowledge from databases. In Proceedings of IEEE international conference on systems, man, and cybernetics (pp. 4388-4393). Orlando, FL, USA.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.