|
Volumn 409, Issue , 2007, Pages 227-245
|
Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
a a a |
Author keywords
[No Author keywords available]
|
Indexed keywords
EPITOPE;
H2 ANTIGEN;
HLA ANTIGEN CLASS 1;
HLA ANTIGEN CLASS 2;
PEPTIDE;
ALGORITHM;
ALLELE;
ANIMAL;
ARTICLE;
BIOLOGY;
CHEMICAL STRUCTURE;
CHEMISTRY;
COMPUTER PROGRAM;
COMPUTER SIMULATION;
GENETICS;
IMMUNOGENETICS;
IMMUNOLOGY;
MAJOR HISTOCOMPATIBILITY COMPLEX;
METABOLISM;
MOUSE;
PROTEIN BINDING;
PROTEIN DATABASE;
QUANTITATIVE STRUCTURE ACTIVITY RELATION;
ALGORITHMS;
ALLELES;
ANIMALS;
COMPUTATIONAL BIOLOGY;
COMPUTER SIMULATION;
DATABASES, PROTEIN;
EPITOPES;
H-2 ANTIGENS;
HISTOCOMPATIBILITY ANTIGENS CLASS I;
HISTOCOMPATIBILITY ANTIGENS CLASS II;
IMMUNOGENETICS;
MAJOR HISTOCOMPATIBILITY COMPLEX;
MICE;
MODELS, MOLECULAR;
PEPTIDES;
PROTEIN BINDING;
QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP;
SOFTWARE;
MLCS;
MLOWN;
|
EID: 44649192502
PISSN: 10643745
EISSN: None
Source Type: Journal
DOI: 10.1007/978-1-60327-118-9_16 Document Type: Article |
Times cited : (10)
|
References (0)
|