|
Volumn 409, Issue , 2007, Pages 201-215
|
Application of machine learning techniques in predicting MHC binders.
a a a |
Author keywords
[No Author keywords available]
|
Indexed keywords
EPITOPE;
HLA ANTIGEN;
ALLELE;
AMINO ACID SEQUENCE;
ARTICLE;
ARTIFICIAL INTELLIGENCE;
ARTIFICIAL NEURAL NETWORK;
BINDING SITE;
BIOLOGY;
CHEMICAL STRUCTURE;
CHEMISTRY;
CLASSIFICATION;
COMPUTER SIMULATION;
GENE;
GENETICS;
HUMAN;
IMMUNOGENETICS;
INTERNET;
MAJOR HISTOCOMPATIBILITY COMPLEX;
METABOLISM;
MOLECULAR GENETICS;
PROTEIN BINDING;
ALLELES;
AMINO ACID SEQUENCE;
ARTIFICIAL INTELLIGENCE;
BINDING SITES;
COMPUTATIONAL BIOLOGY;
COMPUTER SIMULATION;
EPITOPES, T-LYMPHOCYTE;
GENES, MHC CLASS I;
GENES, MHC CLASS II;
HLA ANTIGENS;
HUMANS;
IMMUNOGENETICS;
INTERNET;
MAJOR HISTOCOMPATIBILITY COMPLEX;
MODELS, MOLECULAR;
MOLECULAR SEQUENCE DATA;
NEURAL NETWORKS (COMPUTER);
PROTEIN BINDING;
MLCS;
MLOWN;
|
EID: 44649167715
PISSN: 10643745
EISSN: None
Source Type: Journal
DOI: 10.1007/978-1-60327-118-9_14 Document Type: Article |
Times cited : (57)
|
References (0)
|