-
1
-
-
44649176830
-
-
X. Chen, J. Chadam, R. Stamicar, The optimal exercise boundary for American put options: analytic and numerical approximations, Preprint, 2000.
-
X. Chen, J. Chadam, R. Stamicar, The optimal exercise boundary for American put options: analytic and numerical approximations, Preprint, 2000.
-
-
-
-
2
-
-
0032166374
-
Calculation of weights in finite difference formulas
-
Fornberg B. Calculation of weights in finite difference formulas. SIAM Rev. 40 3 (1998) 685-691
-
(1998)
SIAM Rev.
, vol.40
, Issue.3
, pp. 685-691
-
-
Fornberg, B.1
-
3
-
-
0036588758
-
On the early exercise boundary of the American put option
-
Goodman J., and Ostrov D.N. On the early exercise boundary of the American put option. SIAM J. Appl. Math. 62 5 (2002) 1823-1835
-
(2002)
SIAM J. Appl. Math.
, vol.62
, Issue.5
, pp. 1823-1835
-
-
Goodman, J.1
Ostrov, D.N.2
-
4
-
-
11044237933
-
A fast numerical method for the Black-Scholes equation of American options
-
Han H., and Wu X. A fast numerical method for the Black-Scholes equation of American options. SIAM J. Numer. Anal. 41 6 (2003) 2081-2095
-
(2003)
SIAM J. Numer. Anal.
, vol.41
, Issue.6
, pp. 2081-2095
-
-
Han, H.1
Wu, X.2
-
5
-
-
0037836721
-
A closed-form solution for options with stochastic volatility with applications to bond and currency options
-
Heston S. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Studies 6 (1993) 327-343
-
(1993)
Rev. Financial Studies
, vol.6
, pp. 327-343
-
-
Heston, S.1
-
6
-
-
84985376342
-
A fourth-order difference method for the one-dimensional general quasilinear parabolic differential equation
-
Jain M.K., Jain R.K., and Mohanty R.K. A fourth-order difference method for the one-dimensional general quasilinear parabolic differential equation. Numer. Methods Partial Differential Equations 6 (1990) 311-319
-
(1990)
Numer. Methods Partial Differential Equations
, vol.6
, pp. 311-319
-
-
Jain, M.K.1
Jain, R.K.2
Mohanty, R.K.3
-
7
-
-
0001444653
-
Binomial models for option valuation-examining and improving convergence
-
Leisen D., and Reimer M. Binomial models for option valuation-examining and improving convergence. Appl. Math. Finance 3 (1996) 319-346
-
(1996)
Appl. Math. Finance
, vol.3
, pp. 319-346
-
-
Leisen, D.1
Reimer, M.2
-
8
-
-
0037809669
-
Accurate and efficient pricing of vanilla stock options via the Crandall-Douglas scheme
-
McCartin B.J., and Labadie S.M. Accurate and efficient pricing of vanilla stock options via the Crandall-Douglas scheme. Appl. Math. Comput. 143 (2003) 39-60
-
(2003)
Appl. Math. Comput.
, vol.143
, pp. 39-60
-
-
McCartin, B.J.1
Labadie, S.M.2
-
9
-
-
44649194304
-
-
C.W. Oosterlee, C.C.W. Leentvaar, X. Huang, Accurate American option pricing by grid stretching and high-order finite differences, Working papers, DIAM, Delft University of Technology, the Netherlands, 2005.
-
C.W. Oosterlee, C.C.W. Leentvaar, X. Huang, Accurate American option pricing by grid stretching and high-order finite differences, Working papers, DIAM, Delft University of Technology, the Netherlands, 2005.
-
-
-
-
11
-
-
44649181977
-
-
W.F. Spotz, G.F. Carey, High-order compact finite difference methods, in: V. Andrew, V. Ilin, L. Ridgway Scott (Eds.), ICOSAHOM95, Proceedings of the Third International Conference on Spectral and High Order Methods, 1996, pp. 397-408.
-
W.F. Spotz, G.F. Carey, High-order compact finite difference methods, in: V. Andrew, V. Ilin, L. Ridgway Scott (Eds.), ICOSAHOM95, Proceedings of the Third International Conference on Spectral and High Order Methods, 1996, pp. 397-408.
-
-
-
-
13
-
-
0035499484
-
Extension of high order compact schemes to time dependent problems
-
Spotz W.F., and Carey G.F. Extension of high order compact schemes to time dependent problems. Numer. Methods Partial Differential Equations 17 6 (2001) 657-672
-
(2001)
Numer. Methods Partial Differential Equations
, vol.17
, Issue.6
, pp. 657-672
-
-
Spotz, W.F.1
Carey, G.F.2
-
14
-
-
44649121317
-
-
D.Y. Tangman, A. Gopaul, M. Bhuruth. A fast high-order finite difference algorithm for pricing American options, J. Comput. Appl. Math., submitted.
-
D.Y. Tangman, A. Gopaul, M. Bhuruth. A fast high-order finite difference algorithm for pricing American options, J. Comput. Appl. Math., submitted.
-
-
-
-
16
-
-
0002362312
-
A front-fixing finite difference method for the valuation of American options
-
Wu L., and Kwok Y.K. A front-fixing finite difference method for the valuation of American options. J. Financial Eng. 6 2 (1997) 83-97
-
(1997)
J. Financial Eng.
, vol.6
, Issue.2
, pp. 83-97
-
-
Wu, L.1
Kwok, Y.K.2
|