-
2
-
-
0000189165
-
Primes in arithmetic progressions to large moduli
-
E. BOMBIERI, J. B. FRIEDLANDER and H. IWANIEC, 'Primes in arithmetic progressions to large moduli', Acta Math. 156 (1986) 203-251.
-
(1986)
Acta Math
, vol.156
, pp. 203-251
-
-
BOMBIERI, E.1
FRIEDLANDER, J.B.2
IWANIEC, H.3
-
3
-
-
21844504037
-
Some new asymptotic properties for the zeros of Jacobi, Laguerre and Hermite polynomials
-
H. DETTE and W. J. STUDDEN, 'Some new asymptotic properties for the zeros of Jacobi, Laguerre and Hermite polynomials', Constr. Approx. 11 (1995) 227-238.
-
(1995)
Constr. Approx
, vol.11
, pp. 227-238
-
-
DETTE, H.1
STUDDEN, W.J.2
-
4
-
-
0012492596
-
The difference of consecutive primes
-
P. ERDOS, 'The difference of consecutive primes', Duke Math. J. 6 (1940) 438-441.
-
(1940)
Duke Math. J
, vol.6
, pp. 438-441
-
-
ERDOS, P.1
-
5
-
-
0002745306
-
On the distribution of primes in short intervals
-
P. X. GALLAGHER, 'On the distribution of primes in short intervals', Mathematika 23 (1976) 4-9.
-
(1976)
Mathematika
, vol.23
, pp. 4-9
-
-
GALLAGHER, P.X.1
-
6
-
-
84976129439
-
On Bombieri and Davenport's theorem concerning small gaps between primes'
-
D. A. GOLDSTON, 'On Bombieri and Davenport's theorem concerning small gaps between primes', Mathematika 39 (1992) 10-17.
-
(1992)
Mathematika
, vol.39
, pp. 10-17
-
-
GOLDSTON, D.A.1
-
7
-
-
33744812391
-
Small gaps between primes exist
-
D. A. GOLDSTON, Y. MOTOHASHI, J. PINTZ and C. Y. YILDIRIM, 'Small gaps between primes exist', Proc. Japan Acad. 82A (2006) 61-65.
-
(2006)
Proc. Japan Acad
, vol.82 A
, pp. 61-65
-
-
GOLDSTON, D.A.1
MOTOHASHI, Y.2
PINTZ, J.3
YILDIRIM, C.Y.4
-
9
-
-
85027219567
-
-
D. A. GOLDSTON and C. Y. YILDIRIM, 'Higher correlations of divisor sums related to primes. I: triple correlations', Integers 3 (2003) A5, 66 pp. (electronic).
-
D. A. GOLDSTON and C. Y. YILDIRIM, 'Higher correlations of divisor sums related to primes. I: triple correlations', Integers 3 (2003) A5, 66 pp. (electronic).
-
-
-
-
12
-
-
84871130932
-
The primes contain arbitrarily long arithmetic progressions
-
to appear
-
B. GREEN and T. TAO, 'The primes contain arbitrarily long arithmetic progressions', Ann. of Math. to appear.
-
Ann. of Math
-
-
GREEN, B.1
TAO, T.2
-
14
-
-
33646862107
-
Some problems of "Partitio Numerorum": III on the expression of a number as a sum of primes
-
G. H. HARDY and J. E. LITTLEWOOD, 'Some problems of "Partitio Numerorum": III on the expression of a number as a sum of primes', Acta Math. 44 (1923) 1-70.
-
(1923)
Acta Math
, vol.44
, pp. 1-70
-
-
HARDY, G.H.1
LITTLEWOOD, J.E.2
-
15
-
-
84972344156
-
Small differences between consecutive primes II
-
M. N. HUXLEY, 'Small differences between consecutive primes II', Mathematilta 24 (1977) 142-152.
-
(1977)
Mathematilta
, vol.24
, pp. 142-152
-
-
HUXLEY, M.N.1
-
16
-
-
34548274659
-
An application of the Fouvry-Iwaniec theorem
-
M. N. HUXLEY, 'An application of the Fouvry-Iwaniec theorem', Acta Arith. XLIII (1984) 441-443.
-
(1984)
Acta Arith
, vol.43
, pp. 441-443
-
-
HUXLEY, M.N.1
-
17
-
-
0007107901
-
Small differences between prime numbers
-
H. MAIER, 'Small differences between prime numbers', Michigan Math. J. 35 (1988) 323-344.
-
(1988)
Michigan Math. J
, vol.35
, pp. 323-344
-
-
MAIER, H.1
-
20
-
-
77950663195
-
The difference between consecutive prime numbers. II
-
R. A. RANKIN, 'The difference between consecutive prime numbers. II', Proc. Cambridge Philos. Soc. 36 (1940) 255-266.
-
(1940)
Proc. Cambridge Philos. Soc
, vol.36
, pp. 255-266
-
-
RANKIN, R.A.1
-
23
-
-
85027240391
-
-
E. C. TITCHMARSH, The theory of the Riemann zeta-function, 2nd edn, edited and with a preface by D. R. Heath-Brown (The Clarendon Press, Oxford University Press, New York, 1986).
-
E. C. TITCHMARSH, The theory of the Riemann zeta-function, 2nd edn, edited and with a preface by D. R. Heath-Brown (The Clarendon Press, Oxford University Press, New York, 1986).
-
-
-
|