메뉴 건너뛰기




Volumn 5032 LNAI, Issue , 2008, Pages 308-319

Using unsupervised learning for network alert correlation

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; BIONICS; BOOLEAN FUNCTIONS; COMPUTATIONAL METHODS; COMPUTER CRIME; COMPUTER NETWORKS; CORRELATION METHODS; EVOLUTIONARY ALGORITHMS; INTRUSION DETECTION; LEARNING SYSTEMS; MATHEMATICAL MODELS; METROPOLITAN AREA NETWORKS; NETWORK PROTOCOLS; SCHEDULING ALGORITHMS; SENSORS; SIGNAL DETECTION; STAGES;

EID: 44649096422     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-68825-9_29     Document Type: Conference Paper
Times cited : (47)

References (16)
  • 1
    • 44649169757 scopus 로고    scopus 로고
    • Northcutt, S, et al, SHADOW: Second heuristic analysis for defensive online warfare
    • Northcutt, S., et al.: SHADOW: Second heuristic analysis for defensive online warfare
  • 2
    • 44649155108 scopus 로고    scopus 로고
    • Danyliw, R, ACID: Analysis console for intrusion detections
    • Danyliw, R.: ACID: Analysis console for intrusion detections
  • 4
    • 44649125480 scopus 로고    scopus 로고
    • Valdes, A., Skinner, K.: Probabilistic alert correlation. In: Lee, W., Mé, L., Wespi, A. (eds.) RAID 2001. LNCS, 2212, pp. 54-68. Springer, Heidelberg (2001)
    • Valdes, A., Skinner, K.: Probabilistic alert correlation. In: Lee, W., Mé, L., Wespi, A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 54-68. Springer, Heidelberg (2001)
  • 7
    • 44649195130 scopus 로고    scopus 로고
    • Autocorrel ii: Unsupervised network event correlation using neural networks
    • CR 2005-155, DRDC Ottawa, Ottawa, ON October
    • Japkowicz, N., Smith, R.: Autocorrel ii: Unsupervised network event correlation using neural networks. Contractor Report CR 2005-155, DRDC Ottawa, Ottawa, ON (October 2005)
    • (2005) Contractor Report
    • Japkowicz, N.1    Smith, R.2
  • 10
    • 2442526701 scopus 로고    scopus 로고
    • Unsupervised learning techniques for an intrusion detection system
    • Nicosia, Cyprus, pp, ACM, New York
    • Zanero, S., Savaresi, S.M.: Unsupervised learning techniques for an intrusion detection system. In: Proceedings of the 2004 ACM Symposium on Applied Computing, Nicosia, Cyprus, pp. 412-419. ACM, New York (2004)
    • (2004) Proceedings of the 2004 ACM Symposium on Applied Computing , pp. 412-419
    • Zanero, S.1    Savaresi, S.M.2
  • 11
    • 33745163595 scopus 로고    scopus 로고
    • Laskov, P., Dussel, P., Rieck, C.S.: Learning intrusion detection: Supervised or unsupervised? In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, 3617, pp. 50-57. Springer, Heidelberg (2005)
    • Laskov, P., Dussel, P., Rieck, C.S.: Learning intrusion detection: Supervised or unsupervised? In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 50-57. Springer, Heidelberg (2005)
  • 12
    • 0002629270 scopus 로고
    • Maximum likelihood from incoming data via the EM algorithm
    • Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incoming data via the EM algorithm. J. Royal Stat. Soc., Series B 39(1), 1-36 (1977)
    • (1977) J. Royal Stat. Soc., Series B , vol.39 , Issue.1 , pp. 1-36
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 13
    • 0003209045 scopus 로고
    • Self-Organizing Maps
    • Springer, Berlin , Second Extended Edition
    • Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Berlin (1995); (Second Extended Edition 1997)
    • (1995) Springer Series in Information Sciences , vol.30
    • Kohonen, T.1
  • 14
    • 85090433665 scopus 로고    scopus 로고
    • Snort - lightweight intrusion detection for networks
    • Seattle, Washington, November 7-12, The USENIX Association
    • Roesch, M.: Snort - lightweight intrusion detection for networks. In: Proceedings of LISA 1999: 13th Systems Administration Conference, Seattle, Washington, November 7-12, 1999, pp. 229-238. The USENIX Association (1999)
    • (1999) Proceedings of LISA 1999: 13th Systems Administration Conference , pp. 229-238
    • Roesch, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.