메뉴 건너뛰기




Volumn 18, Issue 4, 2008, Pages 646-656

Time-varying biomedical signals analysis with multiclass support vector machines employing Lyapunov exponents

Author keywords

Lyapunov exponents; Multiclass support vector machine (SVM); Time varying biomedical signals

Indexed keywords

DOPPLER EFFECT; LYAPUNOV FUNCTIONS; PROBLEM SOLVING; SUPPORT VECTOR MACHINES; TIME VARYING SYSTEMS;

EID: 44449092970     PISSN: 10512004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dsp.2007.10.001     Document Type: Article
Times cited : (12)

References (30)
  • 1
    • 0035437752 scopus 로고    scopus 로고
    • A novel large-memory neural network as an aid in medical diagnosis applications
    • Kordylewski H., Graupe D., and Liu K. A novel large-memory neural network as an aid in medical diagnosis applications. IEEE Trans. Inform. Technol. Biomed. 5 3 (2001) 202-209
    • (2001) IEEE Trans. Inform. Technol. Biomed. , vol.5 , Issue.3 , pp. 202-209
    • Kordylewski, H.1    Graupe, D.2    Liu, K.3
  • 2
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak N., and Choi C.-H. Input feature selection for classification problems. IEEE Trans. Neural Networks 13 1 (2002) 143-159
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.-H.2
  • 3
    • 27744513132 scopus 로고    scopus 로고
    • Feature extraction from Doppler ultrasound signals for automated diagnostic systems
    • Übeyli E.D., and Güler I. Feature extraction from Doppler ultrasound signals for automated diagnostic systems. Comput. Biol. Med. 35 9 (2005) 735-764
    • (2005) Comput. Biol. Med. , vol.35 , Issue.9 , pp. 735-764
    • Übeyli, E.D.1    Güler, I.2
  • 5
    • 0023733016 scopus 로고
    • A comparative study and assessment of Doppler ultrasound spectral estimation techniques, Part II: Methods and results
    • Vaitkus P.J., Cobbold R.S.C., and Johnston K.W. A comparative study and assessment of Doppler ultrasound spectral estimation techniques, Part II: Methods and results. Ultrasound Med. Biol. 14 (1988) 673-688
    • (1988) Ultrasound Med. Biol. , vol.14 , pp. 673-688
    • Vaitkus, P.J.1    Cobbold, R.S.C.2    Johnston, K.W.3
  • 6
    • 5444221443 scopus 로고    scopus 로고
    • Spectral analysis of internal carotid arterial Doppler signals using FFT, AR, MA, and ARMA methods
    • Übeyli E.D., and Güler I. Spectral analysis of internal carotid arterial Doppler signals using FFT, AR, MA, and ARMA methods. Comput. Biol. Med. 34 4 (2004) 293-306
    • (2004) Comput. Biol. Med. , vol.34 , Issue.4 , pp. 293-306
    • Übeyli, E.D.1    Güler, I.2
  • 7
    • 28844479643 scopus 로고    scopus 로고
    • A modified mixture of experts network structure for ECG beats classification with diverse features
    • Güler I., and Übeyli E.D. A modified mixture of experts network structure for ECG beats classification with diverse features. Eng. Appl. Artif. Intell. 18 7 (2005) 845-856
    • (2005) Eng. Appl. Artif. Intell. , vol.18 , Issue.7 , pp. 845-856
    • Güler, I.1    Übeyli, E.D.2
  • 8
    • 6444240833 scopus 로고    scopus 로고
    • ECG beat classifier designed by combined neural network model
    • Güler I., and Übeyli E.D. ECG beat classifier designed by combined neural network model. Pattern Recogn. 38 2 (2005) 199-208
    • (2005) Pattern Recogn. , vol.38 , Issue.2 , pp. 199-208
    • Güler, I.1    Übeyli, E.D.2
  • 9
    • 0036083108 scopus 로고    scopus 로고
    • Study of features based on nonlinear dynamical modeling in ECG arrhythmia detection and classification
    • Owis M.I., Abou-Zied A.H., Youssef A.-B.M., and Kadah Y.M. Study of features based on nonlinear dynamical modeling in ECG arrhythmia detection and classification. IEEE Trans. Biomed. Eng. 49 7 (2002) 733-736
    • (2002) IEEE Trans. Biomed. Eng. , vol.49 , Issue.7 , pp. 733-736
    • Owis, M.I.1    Abou-Zied, A.H.2    Youssef, A.-B.M.3    Kadah, Y.M.4
  • 10
    • 9644262694 scopus 로고    scopus 로고
    • Detecting variability of internal carotid arterial Doppler signals by Lyapunov exponents
    • Güler I., and Übeyli E.D. Detecting variability of internal carotid arterial Doppler signals by Lyapunov exponents. Med. Eng. Phys. 26 9 (2004) 763-771
    • (2004) Med. Eng. Phys. , vol.26 , Issue.9 , pp. 763-771
    • Güler, I.1    Übeyli, E.D.2
  • 11
    • 5444236357 scopus 로고    scopus 로고
    • Detection of electrocardiographic changes in partial epileptic patients using Lyapunov exponents with multilayer perceptron neural networks
    • Übeyli E.D., and Güler I. Detection of electrocardiographic changes in partial epileptic patients using Lyapunov exponents with multilayer perceptron neural networks. Eng. Appl. Artif. Intell. 17 6 (2004) 567-576
    • (2004) Eng. Appl. Artif. Intell. , vol.17 , Issue.6 , pp. 567-576
    • Übeyli, E.D.1    Güler, I.2
  • 12
    • 14844350962 scopus 로고    scopus 로고
    • Determining variability of ophthalmic arterial Doppler signals using Lyapunov exponents
    • Übeyli E.D., and Güler I. Determining variability of ophthalmic arterial Doppler signals using Lyapunov exponents. Comput. Biol. Med. 35 5 (2005) 405-420
    • (2005) Comput. Biol. Med. , vol.35 , Issue.5 , pp. 405-420
    • Übeyli, E.D.1    Güler, I.2
  • 13
    • 0032191932 scopus 로고    scopus 로고
    • ECG pattern recognition and classification using non-linear transformations and neural networks: A review
    • Maglaveras N., Stamkopoulos T., Diamantaras K., Pappas C., and Strintzis M. ECG pattern recognition and classification using non-linear transformations and neural networks: A review. Int. J. Med. Inform. 52 (1998) 191-208
    • (1998) Int. J. Med. Inform. , vol.52 , pp. 191-208
    • Maglaveras, N.1    Stamkopoulos, T.2    Diamantaras, K.3    Pappas, C.4    Strintzis, M.5
  • 14
    • 1642265037 scopus 로고    scopus 로고
    • Support vector machine-based expert system for reliable heartbeat recognition
    • Osowski S., Hoai L.T., and Markiewicz T. Support vector machine-based expert system for reliable heartbeat recognition. IEEE Trans. Biomed. Eng. 51 4 (2004) 582-589
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , Issue.4 , pp. 582-589
    • Osowski, S.1    Hoai, L.T.2    Markiewicz, T.3
  • 16
    • 0029191714 scopus 로고
    • Detection of signals in chaos
    • Haykin S., and Li X.B. Detection of signals in chaos. Proc. IEEE 83 1 (1995) 95-122
    • (1995) Proc. IEEE , vol.83 , Issue.1 , pp. 95-122
    • Haykin, S.1    Li, X.B.2
  • 17
    • 45149144372 scopus 로고
    • Nonlinear prediction of chaotic time series
    • Casdagli M. Nonlinear prediction of chaotic time series. Physica D 35 3 (1989) 335-356
    • (1989) Physica D , vol.35 , Issue.3 , pp. 335-356
    • Casdagli, M.1
  • 19
    • 0001731208 scopus 로고
    • Lyapunov exponents in chaotic systems: Their importance and their evaluation using observed data
    • Abarbanel H.D.I., Brown R., and Kennel M.B. Lyapunov exponents in chaotic systems: Their importance and their evaluation using observed data. Int. J. Mod. Phys. B 5 9 (1991) 1347-1375
    • (1991) Int. J. Mod. Phys. B , vol.5 , Issue.9 , pp. 1347-1375
    • Abarbanel, H.D.I.1    Brown, R.2    Kennel, M.B.3
  • 21
    • 0018989294 scopus 로고
    • Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them
    • Benettin G., Galgani L., Giorgilli A., and Strelcyn J.-M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Meccanica 15 1 (1980) 9-30
    • (1980) Meccanica , vol.15 , Issue.1 , pp. 9-30
    • Benettin, G.1    Galgani, L.2    Giorgilli, A.3    Strelcyn, J.-M.4
  • 23
    • 0008494528 scopus 로고
    • Determining Lyapunov exponents from a time series
    • Wolf A., Swift J.B., Swinney H.L., and Vastano J.A. Determining Lyapunov exponents from a time series. Physica D 16 3 (1985) 285-317
    • (1985) Physica D , vol.16 , Issue.3 , pp. 285-317
    • Wolf, A.1    Swift, J.B.2    Swinney, H.L.3    Vastano, J.A.4
  • 24
    • 0001394076 scopus 로고
    • Measurement of the Lyapunov spectrum from a chaotic time series
    • Sano M., and Sawada Y. Measurement of the Lyapunov spectrum from a chaotic time series. Phys. Rev. Lett. 55 10 (1985) 1082-1085
    • (1985) Phys. Rev. Lett. , vol.55 , Issue.10 , pp. 1082-1085
    • Sano, M.1    Sawada, Y.2
  • 26
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C., and Vapnik V. Support vector networks. Mach. Learn. 20 3 (1995) 273-297
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 27
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich T.G., and Bakiri G. Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2 (1995) 263-286
    • (1995) J. Artif. Intell. Res. , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 29
    • 0033009092 scopus 로고    scopus 로고
    • Artificial neural network analysis of common femoral artery Doppler shift signals: Classification of proximal disease
    • Wright I.A., and Gough N.A.J. Artificial neural network analysis of common femoral artery Doppler shift signals: Classification of proximal disease. Ultrasound Med. Biol. 24 5 (1999) 735-743
    • (1999) Ultrasound Med. Biol. , vol.24 , Issue.5 , pp. 735-743
    • Wright, I.A.1    Gough, N.A.J.2
  • 30
    • 15744394888 scopus 로고    scopus 로고
    • Improving medical diagnostic accuracy of ultrasound Doppler signals by combining neural network models
    • Übeyli E.D., and Güler I. Improving medical diagnostic accuracy of ultrasound Doppler signals by combining neural network models. Comput. Biol. Med. 35 6 (2005) 533-554
    • (2005) Comput. Biol. Med. , vol.35 , Issue.6 , pp. 533-554
    • Übeyli, E.D.1    Güler, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.