메뉴 건너뛰기




Volumn 13, Issue SUPPL., 2001, Pages 196-197

A soft-sensing approach to on-line predict the yields of industrial pyrolysis furnace based on PCA-RBF neural networks

Author keywords

Ethylene process; Neural networks; Principal component analysis(PCA); Process modeling; Pyrolysis furnace; Soft sensing

Indexed keywords


EID: 4444379880     PISSN: 1004731X     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (8)

References (7)
  • 1
    • 27644590162 scopus 로고    scopus 로고
    • Chinese source
  • 2
    • 27644505060 scopus 로고    scopus 로고
    • Chinese source
  • 3
    • 27644527464 scopus 로고    scopus 로고
    • Chinese source
  • 4
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks [J]
    • March
    • Chen S, Cowan C F N, Grant P M. Orthogonal least squares learning algorithm for radial basis function networks [J]. IEEE Transactions on Neural Networks, March 1991, 2 (2): 302-309.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 5
    • 0018651013 scopus 로고
    • Detailed prediction of olefin yields from hydrocarbon pyrolysis through a fundamental simulation model (SPYRO) [J]
    • Dente M, et al. Detailed prediction of olefin yields from hydrocarbon pyrolysis through a fundamental simulation model (SPYRO) [J]. Computers & Chemical Engineering, 1979, (13): 61-75.
    • (1979) Computers & Chemical Engineering , Issue.13 , pp. 61-75
    • Dente, M.1
  • 6
  • 7
    • 27644478360 scopus 로고    scopus 로고
    • Chinese source


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.