메뉴 건너뛰기




Volumn 23, Issue 17, 2004, Pages 2673-2695

Marginalized transition models for longitudinal binary data with ignorable and non-ignorable drop-out

Author keywords

Likelihood; Longitudinal binary data; Marginalized model; Misspecification; Non ignorable missing data

Indexed keywords

HALOPERIDOL; PLACEBO; RISPERIDONE;

EID: 4444358330     PISSN: 02776715     EISSN: None     Source Type: Journal    
DOI: 10.1002/sim.1850     Document Type: Article
Times cited : (18)

References (36)
  • 2
    • 0023606101 scopus 로고
    • The positive and negative syndrome scale (PANSS) for schizophrenia
    • Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin 1987; 13:261-276.
    • (1987) Schizophrenia Bulletin , vol.13 , pp. 261-276
    • Kay, S.R.1    Fiszbein, A.2    Opler, L.A.3
  • 5
    • 4243828610 scopus 로고
    • Informative drop-out in longitudinal data analysis
    • (with discussion)
    • Diggle P, Kenward MG. Informative drop-out in longitudinal data analysis (with discussion). Applied Statistics 1994; 43:49-93.
    • (1994) Applied Statistics , vol.43 , pp. 49-93
    • Diggle, P.1    Kenward, M.G.2
  • 7
    • 0023921412 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
    • (Corr: V45 pl347; V47 p357)
    • Wu MC, Carroll RJ. Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process (Corr: V45 pl347; V47 p357). Biometrics 1988; 44:175-188.
    • (1988) Biometrics , vol.44 , pp. 175-188
    • Wu, M.C.1    Carroll, R.J.2
  • 8
    • 0024205301 scopus 로고
    • Models for longitudinal data: A generalized estimating equations approach
    • Zeger SL, Liang K-Y, Albert PS. Models for longitudinal data: A generalized estimating equations approach. Biometrics 1988; 44:1049-1060.
    • (1988) Biometrics , vol.44 , pp. 1049-1060
    • Zeger, S.L.1    Liang, K.-Y.2    Albert, P.S.3
  • 10
    • 0001986642 scopus 로고    scopus 로고
    • The analysis of longitudinal ordinal data with nonrandom drop-out
    • Molenberghs G, Kenward MG, Lesaffre E. The analysis of longitudinal ordinal data with nonrandom drop-out. Biometrika 1997; 84(1):33-44.
    • (1997) Biometrika , vol.84 , Issue.1 , pp. 33-44
    • Molenberghs, G.1    Kenward, M.G.2    Lesaffre, E.3
  • 12
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang K-Y, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.-Y.1    Zeger, S.L.2
  • 13
    • 84950421496 scopus 로고
    • Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
    • Robins JM, Romitzky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 1995; 90:106-121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 106-121
    • Robins, J.M.1    Romitzky, A.2    Zhao, L.P.3
  • 16
    • 84972541974 scopus 로고
    • Regression models for discrete longitudinal response
    • (with discussion)
    • Fitzmaurice GM, Laird NM, Rotnitzky AG. Regression models for discrete longitudinal response (with discussion). Statistical Science 1993; 8:284-309.
    • (1993) Statistical Science , vol.8 , pp. 284-309
    • Fitzmaurice, G.M.1    Laird, N.M.2    Rotnitzky, A.G.3
  • 18
    • 0002276548 scopus 로고    scopus 로고
    • Bayesian tobit modeling of longitudinal ordinal clinical trial compliance data with nonignorable missingness
    • Cowles MK, Carlin BP, Connett JE. Bayesian tobit modeling of longitudinal ordinal clinical trial compliance data with nonignorable missingness. Journal of the American Statistical Association 1996; 91:86-98.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 86-98
    • Cowles, M.K.1    Carlin, B.P.2    Connett, J.E.3
  • 19
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins LM, Schafer JL, Kam C-M. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods 2002; 6:330-351.
    • (2002) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-M.3
  • 20
    • 0041182327 scopus 로고    scopus 로고
    • The generalized estimating equation approach when data are not are missing completely at random
    • Paik MC. The generalized estimating equation approach when data are not are missing completely at random. Journal of the American Statistical Association 1997; 92(440):1320-1329.
    • (1997) Journal of the American Statistical Association , vol.92 , Issue.440 , pp. 1320-1329
    • Paik, M.C.1
  • 21
    • 0035989803 scopus 로고    scopus 로고
    • Marginalized transition models and likelihood inference for longitudinal categorical data
    • Heagerty PJ. Marginalized transition models and likelihood inference for longitudinal categorical data. Biometrics 2002; 58:342-351.
    • (2002) Biometrics , vol.58 , pp. 342-351
    • Heagerty, P.J.1
  • 22
    • 0001780119 scopus 로고    scopus 로고
    • Marginalized multilevel models and likelihood inference
    • (with discussion)
    • Heagerty PJ, Zeger SL. Marginalized multilevel models and likelihood inference (with discussion). Statistical Science 2000; 15:1-26.
    • (2000) Statistical Science , vol.15 , pp. 1-26
    • Heagerty, P.J.1    Zeger, S.L.2
  • 23
    • 0033936551 scopus 로고    scopus 로고
    • A transitional model for longitudinal binary data subject to nonignorable missing data
    • Albert PS. A transitional model for longitudinal binary data subject to nonignorable missing data. Biometrics 2000; 56:602-608.
    • (2000) Biometrics , vol.56 , pp. 602-608
    • Albert, P.S.1
  • 24
    • 0002671486 scopus 로고
    • Logistic regression for autocorrelated data with application to repeated measures
    • Azzalini A. Logistic regression for autocorrelated data with application to repeated measures. Biometrika 1994; 81:767-775.
    • (1994) Biometrika , vol.81 , pp. 767-775
    • Azzalini, A.1
  • 26
    • 0023716933 scopus 로고
    • Missing data in longitudinal studies
    • Laird NM. Missing data in longitudinal studies. Statistics in Medicine 1988; 7:305-315.
    • (1988) Statistics in Medicine , vol.7 , pp. 305-315
    • Laird, N.M.1
  • 27
    • 0027740220 scopus 로고
    • Investigating onset, cessation, relapse, and recovery: Why you should, and how you can, use discrete-time survival analysis to examine event occurrence
    • Willett JB, Singer JD. Investigating onset, cessation, relapse, and recovery: why you should, and how you can, use discrete-time survival analysis to examine event occurrence. Journal of Consulting and Clinical Psychology 1993; 61:952-965.
    • (1993) Journal of Consulting and Clinical Psychology , vol.61 , pp. 952-965
    • Willett, J.B.1    Singer, J.D.2
  • 29
    • 4444326319 scopus 로고    scopus 로고
    • Analysis of binary longitudinal data with dropout and death
    • Ph.D. Thesis, University of Washington Department of Biostatistics, Seattle, WA
    • Kurland BF. Analysis of binary longitudinal data with dropout and death. Ph.D. Thesis, University of Washington Department of Biostatistics, Seattle, WA, 2002.
    • (2002)
    • Kurland, B.F.1
  • 31
    • 0037202104 scopus 로고    scopus 로고
    • Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random
    • Preisser JS, Lohman KK, Rathouz PJ. Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random. Statistics in Medicine 2002; 21:3035-3054.
    • (2002) Statistics in Medicine , vol.21 , pp. 3035-3054
    • Preisser, J.S.1    Lohman, K.K.2    Rathouz, P.J.3
  • 33
    • 0029938345 scopus 로고    scopus 로고
    • Efficiency of regression estimates for clustered data
    • Mancl LA, Leroux BG. Efficiency of regression estimates for clustered data. Biometrics 1996; 52:500-511.
    • (1996) Biometrics , vol.52 , pp. 500-511
    • Mancl, L.A.1    Leroux, B.G.2
  • 35
    • 0041333009 scopus 로고    scopus 로고
    • Generalized additive selection models for the analysis of studies with potentially non-ignorable missing outcome data
    • Scharlstein DO, Irizarry RA. Generalized additive selection models for the analysis of studies with potentially non-ignorable missing outcome data. Biometrics 2003; 59:601-613.
    • (2003) Biometrics , vol.59 , pp. 601-613
    • Scharfstein, D.O.1    Irizarry, R.A.2
  • 36


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.