메뉴 건너뛰기




Volumn 77, Issue 5, 2008, Pages

Nonperturbative k -body to two-body commuting conversion Hamiltonians and embedding problem instances into Ising spins

Author keywords

[No Author keywords available]

Indexed keywords

ENERGY GAP; GROUND STATE; HAMILTONIANS; PARTICLE INTERACTIONS; PERTURBATION TECHNIQUES;

EID: 44349194348     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.77.052331     Document Type: Article
Times cited : (124)

References (31)
  • 1
    • 26444479778 scopus 로고
    • SCIEAS 0036-8075 10.1126/science.220.4598.671
    • S. Kirkpatrick, Science SCIEAS 0036-8075 10.1126/science.220.4598.671 220, 671 (1983).
    • (1983) Science , vol.220 , pp. 671
    • Kirkpatrick, S.1
  • 2
    • 0033617582 scopus 로고    scopus 로고
    • SCIEAS 0036-8075 10.1126/science.284.5415.779
    • J. Brooke, D. Bitko, T. F. Rosenbaum, and G. Aeppli, Science SCIEAS 0036-8075 10.1126/science.284.5415.779 284, 779 (1999).
    • (1999) Science , vol.284 , pp. 779
    • Brooke, J.1    Bitko, D.2    Rosenbaum, T.F.3    Aeppli, G.4
  • 5
    • 0001051761 scopus 로고
    • JPHAC5 0305-4470 10.1088/0305-4470/15/10/028
    • F. Barahona, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/15/10/028 15, 3241 (1982).
    • (1982) J. Phys. A , vol.15 , pp. 3241
    • Barahona, F.1
  • 7
    • 0002433737 scopus 로고
    • ONEWDU 0098-907X
    • R. Feynman, Optics News ONEWDU 0098-907X 11, 11 (1982).
    • (1982) Optics News , vol.11 , pp. 11
    • Feynman, R.1
  • 9
    • 34547609329 scopus 로고    scopus 로고
    • JMAPAQ 0022-2488 10.1063/1.2748377
    • D. Nagaj and S. Mozes, J. Math. Phys. JMAPAQ 0022-2488 10.1063/1.2748377 48, 072104 (2007).
    • (2007) J. Math. Phys. , vol.48 , pp. 072104
    • Nagaj, D.1    Mozes, S.2
  • 10
    • 33750165209 scopus 로고    scopus 로고
    • SMJCAT 0097-5397 10.1137/S0097539704445226
    • J. Kempe, A. Kitaev, and O. Regev, SIAM J. Comput. SMJCAT 0097-5397 10.1137/S0097539704445226 35, 1070 (2006).
    • (2006) SIAM J. Comput. , vol.35 , pp. 1070
    • Kempe, J.1    Kitaev, A.2    Regev, O.3
  • 11
    • 44349172741 scopus 로고    scopus 로고
    • arXiv:quant-ph/0504050.
    • R. Oliveira and B. Terhal, e-print arXiv:quant-ph/0504050.
    • Oliveira, R.1    Terhal, B.2
  • 12
    • 33750165209 scopus 로고    scopus 로고
    • SMJCAT 0097-5397 10.1137/S0097539704445226
    • J. D. Biamonte and P. J. Love, SIAM J. Comput. SMJCAT 0097-5397 10.1137/S0097539704445226 35, 1070 (2006).
    • (2006) SIAM J. Comput. , vol.35 , pp. 1070
    • Biamonte, J.D.1    Love, P.J.2
  • 14
    • 44349173292 scopus 로고    scopus 로고
    • arXiv:0705.4067.
    • S. Irani, e-print arXiv:0705.4067.
    • Irani, S.1
  • 17
    • 38349169118 scopus 로고    scopus 로고
    • SMJCAT 0097-5397 10.1137/S0097539705447323
    • D. Aharonov, SIAM J. Comput. SMJCAT 0097-5397 10.1137/S0097539705447323 37, 166 (2007).
    • (2007) SIAM J. Comput. , vol.37 , pp. 166
    • Aharonov, D.1
  • 19
    • 31244435415 scopus 로고    scopus 로고
    • DAMADU 0166-218X 10.1016/S0166-218X(01)00336-5
    • E. Boros and P. L. Hammer, Discrete Appl. Math. DAMADU 0166-218X 10.1016/S0166-218X(01)00336-5 123, 155 (2002).
    • (2002) Discrete Appl. Math. , vol.123 , pp. 155
    • Boros, E.1    Hammer, P.L.2
  • 20
    • 44349114844 scopus 로고    scopus 로고
    • note
    • It is known that finding the ground state of Hamiltonians formed from simple sums of the inequality operator xi xj is NP complete on a planar graph.
  • 21
    • 44349093512 scopus 로고    scopus 로고
    • note
    • It is understood that a term in a Hamiltonian such as σi σj is the operator σ acting on the i th and j th qubit with the omitted identity operator acting on the rest of the Hilbert space. The tensor product symbol (□) is omitted between operators.
  • 22
    • 0242485151 scopus 로고    scopus 로고
    • NATUAS 0028-0836 10.1038/nature02015
    • T. Yamamoto, Nature (London) NATUAS 0028-0836 10.1038/nature02015 425, 941 (2003).
    • (2003) Nature (London) , vol.425 , pp. 941
    • Yamamoto, T.1
  • 24
    • 34247327847 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.98.177001
    • R. Harris, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98. 177001 98, 177001 (2007).
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 177001
    • Harris, R.1
  • 25
    • 44349143137 scopus 로고    scopus 로고
    • note
    • A simplistic Hamiltonian with vectors in the ground space L corresponding to logical AND, that is L=span { | 000, | 010, | 100, | 111 } (ordered | x1 x2 | z, where z = x1 x2), has the form: H=δ (1- | 000 000 | - | 010 010 | - | 100 100 | - | 111 111 |).
  • 26
    • 44349094671 scopus 로고    scopus 로고
    • note
    • For the purpose of this section one is actually only concerned with the null space of the Hamiltonian and the spectral gap δ so Hprop > Hin is sufficient.
  • 27
    • 44349142546 scopus 로고    scopus 로고
    • noe
    • Assume that Hprop represents a circuit and is given as an oracle Hamiltonian. One wishes to search for an input bit string x that will make the circuit output z =1. In this case, we will force an energy penalty any time the circuit outputs 0 by acting on the output qubit, z, with the Hamiltonian Hin = |0 0|. After successful adiabatic evolution, qubits x1, x2, and x3 can be measured to determine an input causing the circuit to output 1. If the circuit never outputs 1, successful adiabatic evolution will return an input that minimizes the Hamming distance from an input that would cause the circuit to output 1.
  • 29
    • 44349177876 scopus 로고    scopus 로고
    • http://en.wikipedia.org
  • 30
    • 44349152778 scopus 로고    scopus 로고
    • note
    • Where exclusive OR (XOR) is given as f (x1, x2) = def x1 x2 = x̄ 1 x2 x1 x̄ 2 = x1 + x2 -2 x1 x2, and equivalence (EQV) as f (x1, x2) = def x1 x2 = x̄ 1 x̄ 2 x1 x2 =1- x1 - x2 +2 x1 x2.
  • 31
    • 44349158768 scopus 로고    scopus 로고
    • note
    • This spectrum corresponds to the Walsh function represented by the eighth column of the matrix H/3, where H is the 2×2 Hardamard matrix. We remark that { { 0,1 }, } is the Galois field Z2.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.