메뉴 건너뛰기




Volumn 6915, Issue , 2008, Pages

True-false lumen segmentation of aortic dissection using multi-scale wavelet analysis and generative-discriminative model matching

Author keywords

Generative and discriminative learning; Model matching; Quantitative image analysis; Segmentation; Wavelet analysis; X ray CT

Indexed keywords

IMAGE ANALYSIS; IMAGE SEGMENTATION; WAVELET ANALYSIS;

EID: 44349121074     PISSN: 16057422     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.770610     Document Type: Conference Paper
Times cited : (23)

References (36)
  • 1
    • 33749421494 scopus 로고    scopus 로고
    • Automatic Segmentation of the Aortic Dissection Membrane from 3D CTA Images
    • T. Kovacs et al., "Automatic Segmentation of the Aortic Dissection Membrane from 3D CTA Images," In Medical Imaging and Augmented Reality, vol. 4091, pp. 317-324, (2006).
    • (2006) In Medical Imaging and Augmented Reality , vol.4091 , pp. 317-324
    • Kovacs, T.1
  • 2
    • 85177184211 scopus 로고    scopus 로고
    • I. Koren, A. F. Laine, et al., Edge Detection in Echocardiographic Image Sequences by 3-D Multi-Scale Analysis, In of Proceedings IEEE International Conference on Image Processing, 1, pp. 288-292, (1994).
    • I. Koren, A. F. Laine, et al., "Edge Detection in Echocardiographic Image Sequences by 3-D Multi-Scale Analysis," In of Proceedings IEEE International Conference on Image Processing, vol. 1, pp. 288-292, (1994).
  • 3
    • 0030416961 scopus 로고    scopus 로고
    • Border Identification of Echocardiograms via Multi-Scale Edge Detection and Shape Modeling
    • Lausanne, Switzerland
    • A. Laine and X. Zong, "Border Identification of Echocardiograms via Multi-Scale Edge Detection and Shape Modeling," In Proceedings of the IEEE International Conference on Image Processing, Lausanne, Switzerland, vol. 3, pp. 287-290, (1996).
    • (1996) Proceedings of the IEEE International Conference on Image Processing , vol.3 , pp. 287-290
    • Laine, A.1    Zong, X.2
  • 5
    • 9444260139 scopus 로고    scopus 로고
    • Discriminative, Generative, and Imitative Learning,
    • PhD Thesis, Media Laboratory MIT
    • T. Jebara, "Discriminative, Generative, and Imitative Learning," PhD Thesis, Media Laboratory MIT, (2001).
    • (2001)
    • Jebara, T.1
  • 6
    • 44349126704 scopus 로고    scopus 로고
    • Unknown, Aortic Dissection, http://en.wikipedia.org/wiki/ Aortic_dissection, Wikipedia, (2007).
    • Unknown, "Aortic Dissection," http://en.wikipedia.org/wiki/ Aortic_dissection, Wikipedia, (2007).
  • 13
    • 0000262562 scopus 로고
    • Hierarchical Mixtures of Experts and the EM Algorithm
    • M.I. Jordan and R. A. Jacobs, "Hierarchical Mixtures of Experts and the EM Algorithm," In Neural Computation, vol. 6, pp. 181-214, (1994).
    • (1994) In Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 20
    • 24644479275 scopus 로고    scopus 로고
    • Generative Versus Discriminative Methods for Object Recognition
    • CVPR
    • I. Ulusoy, C. M. Bishop, "Generative Versus Discriminative Methods for Object Recognition," Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 258-265, (2005).
    • (2005) Computer Vision and Pattern Recognition , vol.2 , pp. 258-265
    • Ulusoy, I.1    Bishop, C.M.2
  • 21
    • 34248560655 scopus 로고    scopus 로고
    • Discriminative Learning can Succeed where Generative Learning Fails
    • P. M. Long, R. A. Servedio, H. U. Simon, "Discriminative Learning can Succeed where Generative Learning Fails," Information Processing Letters, vol. 103, no. 4, pp. 131-135, (2007).
    • (2007) Information Processing Letters , vol.103 , Issue.4 , pp. 131-135
    • Long, P.M.1    Servedio, R.A.2    Simon, H.U.3
  • 22
    • 34047204042 scopus 로고    scopus 로고
    • Combining Generative and Discriminative Methods for Pixel Classification with Multi-Conditional Learning
    • ICPR
    • B. M. Kelm, C. Pal, and A. McCallum, "Combining Generative and Discriminative Methods for Pixel Classification with Multi-Conditional Learning," Proceedings of the 18th International Conference on Pattern Recognition (ICPR), vol. 2, pp. 828-832, (2006).
    • (2006) Proceedings of the 18th International Conference on Pattern Recognition , vol.2 , pp. 828-832
    • Kelm, B.M.1    Pal, C.2    McCallum, A.3
  • 23
    • 2142830711 scopus 로고    scopus 로고
    • Maximum Conditional Likelihood via Bound Maximization and the CEM Algorithm
    • NIPS
    • T. Jebara and A. Pentland, "Maximum Conditional Likelihood via Bound Maximization and the CEM Algorithm," In Neural Information Processing Systems 11, NIPS, (1998).
    • (1998) Neural Information Processing Systems , vol.11
    • Jebara, T.1    Pentland, A.2
  • 24
    • 0012708049 scopus 로고    scopus 로고
    • On Reversing Jensen's Inequality, In Neural Information Processing Systems 13
    • T. Jebara and A. Pentland, "On Reversing Jensen's Inequality," In Neural Information Processing Systems 13, NIPS 13, (2000).
    • (2000) NIPS , vol.13
    • Jebara, T.1    Pentland, A.2
  • 25
    • 0007727813 scopus 로고    scopus 로고
    • Maximum Entropy Discrimination, In Neural Information Processing Systems 12
    • T. Jaakkola, M. Meila, and T. Jebara, "Maximum Entropy Discrimination," In Neural Information Processing Systems 12, NIPS 12, (1999).
    • (1999) NIPS , vol.12
    • Jaakkola, T.1    Meila, M.2    Jebara, T.3
  • 31
    • 33748123943 scopus 로고    scopus 로고
    • Constrained Gaussian Mixture Model Framework for Automatic Segmentation of MR Brain Images
    • H. Greenspan, A. Ruf, and J. Goldberger, "Constrained Gaussian Mixture Model Framework for Automatic Segmentation of MR Brain Images," In IEEE Transactions on Medical Imaging (TMI), vol. 25, no. 9, pp. 1233-1245, (2006).
    • (2006) IEEE Transactions on Medical Imaging (TMI) , vol.25 , Issue.9 , pp. 1233-1245
    • Greenspan, H.1    Ruf, A.2    Goldberger, J.3
  • 32
  • 33
    • 0037002322 scopus 로고    scopus 로고
    • A Support Vector Machine Approach for Detection of Microcalcifications
    • I. El-Naqa, Y.Yang, M. N. Wernick, "A Support Vector Machine Approach for Detection of Microcalcifications," In IEEE Transactions on Medical Imaging (TMI), vol. 21, no. 12, pp. 1552-1563, (2002).
    • (2002) IEEE Transactions on Medical Imaging (TMI) , vol.21 , Issue.12 , pp. 1552-1563
    • El-Naqa, I.1    Yang, Y.2    Wernick, M.N.3
  • 35
    • 0030151782 scopus 로고    scopus 로고
    • Frame Representations for Texture Segmentation
    • A. F. Laine and J. Fan, "Frame Representations for Texture Segmentation," In IEEE Transactions on Image Processing (TIP), vol. 5, no. 5, pp. 771-780, (1996).
    • (1996) IEEE Transactions on Image Processing (TIP) , vol.5 , Issue.5 , pp. 771-780
    • Laine, A.F.1    Fan, J.2
  • 36
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods
    • MIT Press
    • J. Platt, "Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods," In Advances in Large Margin Classifiers, MIT Press, (1999).
    • (1999) Advances in Large Margin Classifiers
    • Platt, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.