-
1
-
-
0036052453
-
An adaptive time step procedure for a parabolic problem with blow-up
-
G. Acosta R.G. Duran J.D. Rossi An adaptive time step procedure for a parabolic problem with blow-up Computing 68 2002 343 373
-
(2002)
Computing
, vol.68
, pp. 343-373
-
-
Acosta, G.1
Duran, R.G.2
Rossi, J.D.3
-
3
-
-
0000355898
-
Final time blowup profiles for semilinear parabolic equations via center manifold theory
-
J. Bebernes S. Bricher Final time blowup profiles for semilinear parabolic equations via center manifold theory SIAM J. Math. Anal. 23 1992 852 869
-
(1992)
SIAM J. Math. Anal.
, vol.23
, pp. 852-869
-
-
Bebernes, J.1
Bricher, S.2
-
4
-
-
84990610650
-
A rescaling algorithm for the numerical calculation of blowing-up solutions
-
M. Berger R.V. Kohn A rescaling algorithm for the numerical calculation of blowing-up solutions Commun. Pure Appl. Math. 1988 841 863
-
(1988)
Commun. Pure Appl. Math.
, pp. 841-863
-
-
Berger, M.1
Kohn, R.V.2
-
5
-
-
27844566680
-
An adaptive numerical method to handle blow-up in a parabolic system
-
C. Brändle F. Quirós J.D. Rossi An adaptive numerical method to handle blow-up in a parabolic system Numer. Math. 102 2005 39 59
-
(2005)
Numer. Math.
, vol.102
, pp. 39-59
-
-
Brändle, C.1
Quirós, F.2
Rossi, J.D.3
-
6
-
-
33745672093
-
Computation of self-similar solution profiles for the nonlinear Schrödinger equation
-
C. Budd O. Koch E. Weinmüller Computation of self-similar solution profiles for the nonlinear Schrödinger equation Computing 77 2006 335 346
-
(2006)
Computing
, vol.77
, pp. 335-346
-
-
Budd, C.1
Koch, O.2
Weinmüller, E.3
-
7
-
-
10244229064
-
Precise computations of chemotactic collapse using moving mesh methods
-
C.J. Budd R. Carretero-González R.D. Russell Precise computations of chemotactic collapse using moving mesh methods J. Comput. Phys. 202 2005 463 487
-
(2005)
J. Comput. Phys.
, vol.202
, pp. 463-487
-
-
Budd, C.J.1
Carretero-González, R.2
Russell, R.D.3
-
9
-
-
33646255211
-
Parabolic Monge-Ampère methods for blow-up problems in several spatial dimensions
-
C.J. Budd J.F. Williams Parabolic Monge-Ampère methods for blow-up problems in several spatial dimensions J. Phys. A Math. Gen. 39 2006 5425 5444
-
(2006)
J. Phys. A Math. Gen.
, vol.39
, pp. 5425-5444
-
-
Budd, C.J.1
Williams, J.F.2
-
10
-
-
0015960570
-
Splines (with optimal knots) are better
-
H.G. Burchard Splines (with optimal knots) are better Appl. Anal. 3 1974 309 319
-
(1974)
Appl. Anal.
, vol.3
, pp. 309-319
-
-
Burchard, H.G.1
-
11
-
-
0002791812
-
Good approximation by splines with variables knots II
-
C. de Boor Good approximation by splines with variables knots II G.A. Watson Conference on the Numerical Solution of Differential Equations, Dundee, Scotland, 1973 Lecture Notes in Mathematics vol. 363 1974 Springer-Verlag Berlin 12 20
-
(1974)
, pp. 12-20
-
-
de Boor, C.1
-
12
-
-
85189838328
-
-
J. Emenyu, Adaptive numerical solution of problems with quenching or blowup solutions. Technical Report (Master’s thesis), Department of Mathematics, University of Kansas, Lawrence, Kansas 66049, USA, 2002.
-
-
-
-
13
-
-
0028446372
-
Moving mesh partial differential equations (MMPDEs) based upon the equidistribution principle
-
W. Huang Y. Ren R.D. Russell Moving mesh partial differential equations (MMPDEs) based upon the equidistribution principle SIAM. J. Numer. Anal. 31 1994 709 730
-
(1994)
SIAM. J. Numer. Anal.
, vol.31
, pp. 709-730
-
-
Huang, W.1
Ren, Y.2
Russell, R.D.3
-
14
-
-
0030081518
-
A moving collocation method for the numerical solution of time dependent differential equations
-
W. Huang R.D. Russell A moving collocation method for the numerical solution of time dependent differential equations Appl. Numer. Math. 20 1996 101 116
-
(1996)
Appl. Numer. Math.
, vol.20
, pp. 101-116
-
-
Huang, W.1
Russell, R.D.2
-
15
-
-
0003640744
-
Perturbation Methods in Applied Mathematics
-
J. Kevorkian J.D. Cole Perturbation Methods in Applied Mathematics 1980 Springer-Verlag New York
-
(1980)
-
-
Kevorkian, J.1
Cole, J.D.2
-
17
-
-
0001640207
-
Finite element analysis of the semi-linear heat equation of blow-up type
-
T. Nakagawa T. Ushijima Finite element analysis of the semi-linear heat equation of blow-up type J.J.H. Miller Topics in numerical analysis vol. 3 1977 Academic Press London, New York 275 291
-
(1977)
, pp. 275-291
-
-
Nakagawa, T.1
Ushijima, T.2
-
18
-
-
0003730895
-
Nonlinear Parabolic and Elliptic Equations
-
C.V. Pao Nonlinear Parabolic and Elliptic Equations 1992 Plenum Press New York
-
(1992)
-
-
Pao, C.V.1
-
19
-
-
34248512082
-
An adaptive mesh method with variable relaxation time
-
A.R. Soheili J.M. Stockie An adaptive mesh method with variable relaxation time J. Franklin Inst. 344 2007 757 764
-
(2007)
J. Franklin Inst.
, vol.344
, pp. 757-764
-
-
Soheili, A.R.1
Stockie, J.M.2
|