메뉴 건너뛰기




Volumn 263, Issue , 2008, Pages 119-134

Trust-based collaborative filtering

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; INFORMATION FILTERING; LEARNING ALGORITHMS; NEAREST NEIGHBOR SEARCH; RECOMMENDER SYSTEMS;

EID: 44149114235     PISSN: 15715736     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-0-387-09428-1_8     Document Type: Conference Paper
Times cited : (107)

References (20)
  • 7
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-to-item collaborative filtering
    • G. Linden, B. Smith, and Y. York. Amazon.com recommendations: Item-to-item collaborative filtering. In IEEE Internet Computing, pages 76-80, 2003.
    • (2003) IEEE Internet Computing , pp. 76-80
    • Linden, G.1    Smith, B.2    York, Y.3
  • 8
    • 56749095761 scopus 로고    scopus 로고
    • The effect of correlation coefficients on communities of recommenders
    • N. Lathia, S. Hailes, and L. Capra. The effect of correlation coefficients on communities of recommenders. In To Appear in ACM SAC TRECK, 2008.
    • (2008) To Appear in ACM SAC TRECK
    • Lathia, N.1    Hailes, S.2    Capra, L.3
  • 11
    • 49749086487 scopus 로고    scopus 로고
    • Scalable collaborative filtering with jointly derived neighborhood interpolation weights
    • IEEE
    • R. Bell and Y. Koren. Scalable collaborative filtering with jointly derived neighborhood interpolation weights. In IEEE International Conference on Data Mining (ICDM'07). IEEE, 2007.
    • (2007) IEEE International Conference on Data Mining (ICDM'07)
    • Bell, R.1    Koren, Y.2
  • 13
    • 33646411614 scopus 로고    scopus 로고
    • Evaluating agreement and disagreement among movie reviewers
    • A. Agresti and L. Winner. Evaluating agreement and disagreement among movie reviewers. In Chance, volume 10, 1997.
    • (1997) Chance , vol.10
    • Agresti, A.1    Winner, L.2
  • 15
    • 37049012047 scopus 로고    scopus 로고
    • Does a one-size recommendation system fit all? the effectiveness of collaborative filtering based recommendation systems across different domains and search modes
    • November
    • I. Im and A. Hars. Does a one-size recommendation system fit all? the effectiveness of collaborative filtering based recommendation systems across different domains and search modes. In ACM Transactions on Information Systems (TOIS), volume 26, November 2007.
    • (2007) ACM Transactions on Information Systems (TOIS) , vol.26
    • Im, I.1    Hars, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.