메뉴 건너뛰기




Volumn 227, Issue 13, 2008, Pages 6591-6597

A convergence rate theorem for finite difference approximations to delta functions

Author keywords

Approximation; Convergence rate; Delta function; Finite difference; Integral; Level set method; Regular grid

Indexed keywords

FINITE DIFFERENCE METHOD; MAPPING; NUMERICAL METHODS;

EID: 44149087552     PISSN: 00219991     EISSN: 10902716     Source Type: Journal    
DOI: 10.1016/j.jcp.2008.03.019     Document Type: Article
Times cited : (20)

References (19)
  • 1
    • 85190219567 scopus 로고    scopus 로고
    • J.T. Beale, A proof that a discrete delta function is second order accurate, Preprint at .
  • 2
    • 85190183860 scopus 로고    scopus 로고
    • V.F. Candela, A. Marquina, On the numerical approximation of the length of (implicit) level curves, Preprint 2006.
  • 3
    • 0030584607 scopus 로고    scopus 로고
    • A level set formulation of Eulerian interface capturing methods for incompressible fluid flows
    • Y.C. Chang T.Y. Hou B. Merriman S. Osher A level set formulation of Eulerian interface capturing methods for incompressible fluid flows J. Comput. Phys. 124 1996 449 464
    • (1996) J. Comput. Phys. , vol.124 , pp. 449-464
    • Chang, Y.C.1    Hou, T.Y.2    Merriman, B.3    Osher, S.4
  • 4
    • 18344388470 scopus 로고    scopus 로고
    • Discretization of Dirac delta functions in level set methods
    • B. Engquist A.K. Tornberg R. Tsai Discretization of Dirac delta functions in level set methods J. Comput. Phys. 207 2005 28 51
    • (2005) J. Comput. Phys. , vol.207 , pp. 28-51
    • Engquist, B.1    Tornberg, A.K.2    Tsai, R.3
  • 5
    • 34447280082 scopus 로고    scopus 로고
    • Multi-valued solution and level set methods in computational high frequency wave propagation
    • H. Liu S. Osher R. Tsai Multi-valued solution and level set methods in computational high frequency wave propagation Commun. Comput. Phys. 1 5 2006 765 804
    • (2006) Commun. Comput. Phys. , vol.1 , Issue.5 , pp. 765-804
    • Liu, H.1    Osher, S.2    Tsai, R.3
  • 6
    • 0021417514 scopus 로고
    • The fast solution of Poisson’s and the biharmonic equations on irregular regions
    • A. Mayo The fast solution of Poisson’s and the biharmonic equations on irregular regions SIAM J. Numer. Anal. 21 1984 285 299
    • (1984) SIAM J. Numer. Anal. , vol.21 , pp. 285-299
    • Mayo, A.1
  • 7
    • 34548687223 scopus 로고    scopus 로고
    • Geometric integration over irregular domains with application to level-set methods
    • C. Min F. Gibou Geometric integration over irregular domains with application to level-set methods J. Comput. Phys. 226 2007 1432 1443
    • (2007) J. Comput. Phys. , vol.226 , pp. 1432-1443
    • Min, C.1    Gibou, F.2
  • 8
    • 0003754684 scopus 로고    scopus 로고
    • Level set methods and dynamic implicit surfaces
    • S. Osher R. Fedkiw Level set methods and dynamic implicit surfaces 2003 Springer-Verlag New York
    • (2003)
    • Osher, S.1    Fedkiw, R.2
  • 9
    • 44749084234 scopus 로고
    • Fronts propagating with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations
    • S. Osher J. Sethian Fronts propagating with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations J. Comput. Phys. 79 1988 12 49
    • (1988) J. Comput. Phys. , vol.79 , pp. 12-49
    • Osher, S.1    Sethian, J.2
  • 11
    • 35349007284 scopus 로고    scopus 로고
    • Mathematical models and numerical methods for high frequency waves
    • O. Runborg Mathematical models and numerical methods for high frequency waves Commun. Comput. Phys. 2 5 2007 827 880
    • (2007) Commun. Comput. Phys. , vol.2 , Issue.5 , pp. 827-880
    • Runborg, O.1
  • 12
    • 0003661003 scopus 로고    scopus 로고
    • Level Set Methods and Fast Marching Methods
    • J.A. Sethian Level Set Methods and Fast Marching Methods 1999 Cambridge University Press Cambridge
    • (1999)
    • Sethian, J.A.1
  • 13
    • 25444518233 scopus 로고    scopus 로고
    • The numerical approximation of a delta function with application to level set methods
    • P. Smereka The numerical approximation of a delta function with application to level set methods J. Comput. Phys. 211 2006 77 90
    • (2006) J. Comput. Phys. , vol.211 , pp. 77-90
    • Smereka, P.1
  • 14
    • 7244250225 scopus 로고    scopus 로고
    • Numerical approximations of singular source terms in differential equations
    • A.K. Tornberg B. Engquist Numerical approximations of singular source terms in differential equations J. Comput. Phys. 200 2004 462 488
    • (2004) J. Comput. Phys. , vol.200 , pp. 462-488
    • Tornberg, A.K.1    Engquist, B.2
  • 15
    • 0346009119 scopus 로고    scopus 로고
    • Regularization techniques for numerical approximation of PDEs with singularities
    • A.K. Tornberg B. Engquist Regularization techniques for numerical approximation of PDEs with singularities J. Sci. Comput. 19 2003 527 552
    • (2003) J. Sci. Comput. , vol.19 , pp. 527-552
    • Tornberg, A.K.1    Engquist, B.2
  • 16
    • 33845599106 scopus 로고    scopus 로고
    • Two methods for discretizing a delta function supported on a level set
    • J.D. Towers Two methods for discretizing a delta function supported on a level set J. Comput. Phys. 220 2007 915 931
    • (2007) J. Comput. Phys. , vol.220 , pp. 915-931
    • Towers, J.D.1
  • 17
    • 85190213287 scopus 로고    scopus 로고
    • J.D. Towers, Discretizing delta functions via finite difference and gradient normalization, Preprint at .
  • 18
    • 34548698672 scopus 로고    scopus 로고
    • High order numerical methods to a type of delta function integrals
    • X. Wen High order numerical methods to a type of delta function integrals J. Comput. Phys. 226 2007 1952 1967
    • (2007) J. Comput. Phys. , vol.226 , pp. 1952-1967
    • Wen, X.1
  • 19
    • 85190194754 scopus 로고    scopus 로고
    • X. Wen, High order numerical quadratures to one dimensional delta function integrals, Preprint at .


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.