-
1
-
-
51249173092
-
Quadratic vector fields in the plane have a finite number of limit cycles
-
R. BAMÓN, Quadratic vector fields in the plane have a finite number of limit cycles, Publ. I.H.E.S. 64 (1986), 111-142.
-
(1986)
Publ. I.H.E.S.
, vol.64
, pp. 111-142
-
-
Bamón, R.1
-
3
-
-
0000465791
-
On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type
-
N. BAUTIN, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Amer. Math. Soc. Trans. 100 (1954).
-
(1954)
Amer. Math. Soc. Trans.
, pp. 100
-
-
Bautin, N.1
-
4
-
-
0002751215
-
Topological equivalence of a plane vector field with its principal part defined through Newton polyhedra
-
M. BRUNELLA and M. MIARI, Topological equivalence of a plane vector field with its principal part defined through Newton polyhedra, J. Differential Equations 85 (1990), 338-366.
-
(1990)
J. Differential Equations
, vol.85
, pp. 338-366
-
-
Brunella, M.1
Miari, M.2
-
5
-
-
0001300859
-
Separatrix and limit cycles of quadratic systems and Dulac’s theorem
-
C. CHICONE and D. SHAFER, Separatrix and limit cycles of quadratic systems and Dulac’s theorem, Trans. Amer. Math. Soc. 278 (1983), 585-612.
-
(1983)
Trans. Amer. Math. Soc.
, vol.278
, pp. 585-612
-
-
Chicone, C.1
Shafer, D.2
-
6
-
-
0001520664
-
A survey of quadratic systems
-
W. A. COPPELL, A survey of quadratic systems, J. Differential Equations 2 (1966), 293-304.
-
(1966)
J. Differential Equations
, vol.2
, pp. 293-304
-
-
Coppell, W.A.1
-
7
-
-
0002907911
-
Some quadratic systems with at most one limit cycle
-
Wiley, New York
-
W. A. COPPEL, Some quadratic systems with at most one limit cycle, in “Dynamics Reported” Vol. 2, pp. 61-68, Wiley, New York, 1988.
-
(1988)
Dynamics Reported
, vol.2
, pp. 61-68
-
-
Coppel, W.A.1
-
9
-
-
0003015617
-
Sur les cycles limites
-
H. DULAC, Sur les cycles limites, Bull. Soc. Math. France 51 (1923), 45-188.
-
(1923)
Bull. Soc. Math. France
, vol.51
, pp. 45-188
-
-
Dulac, H.1
-
10
-
-
84966254163
-
Quadratic models for the generic local 3-parameter bifurcations on the plane
-
F. DUMORTIER and P. FIDDELAERS, Quadratic models for the generic local 3-parameter bifurcations on the plane, Trans. Amer. Math. Soc. 326 (1991), 101-126.
-
(1991)
Trans. Amer. Math. Soc.
, vol.326
, pp. 101-126
-
-
Dumortier, F.1
Fiddelaers, P.2
-
13
-
-
0002308949
-
Finitude des cycles limites et accéléro-sommation de l’application de retour
-
Springer, New York/Berlin
-
J. ECALLE, Finitude des cycles limites et accéléro-sommation de l’application de retour, in “Lecture Notes in Mathematics, ” Vol. 1455, pp. 74-159, Springer, New York/Berlin, 1990.
-
(1990)
Lecture Notes in Mathematics
, vol.1455
, pp. 74-159
-
-
Ecalle, J.1
-
15
-
-
0003356823
-
Mathematische Probleme (Lecture): The Second International Congress of Mathematicians Paris 1900, Nachr. Ges. ÌViss. Gottingen Math.-Phys. Ki. (1900), 253-297; Mathematical developments arising from Hilbert’s problems
-
(F. Browder, Ed.), Amer. Math. Soc., Providence, RI
-
D. HILBERT, Mathematische Probleme (lecture): The Second International Congress of Mathematicians Paris 1900, Nachr. Ges. ÌViss. Gottingen Math.-Phys. Ki. (1900), 253-297; Mathematical developments arising from Hilbert’s problems in “Proceedings of Symposium in Pure Mathematics” (F. Browder, Ed.), Vol. 28, pp. 50-51, Amer. Math. Soc., Providence, RI, 1976.
-
(1976)
Proceedings of Symposium in Pure Mathematics
, vol.28
, pp. 50-51
-
-
Hilbert, D.1
-
16
-
-
34250135318
-
Limit cycles of polynomial vector fields with non-degenerate singular points in the (Real) plane
-
Yu ILIASHENKO, Limit cycles of polynomial vector fields with non-degenerate singular points in the (real) plane, Functional Anal. Appl 18 (1985), 199-209.
-
(1985)
Functional Anal. Appl
, vol.18
, pp. 199-209
-
-
Iliashenko, Y.1
-
17
-
-
0012778404
-
Finiteness theorems for limit cycles
-
Yu Iliashenko, Finiteness theorems for limit cycles, Russian Math. Surveys 40 (1990), 143-200.
-
(1990)
Russian Math. Surveys
, vol.40
, pp. 143-200
-
-
Iliashenko, Y.1
-
19
-
-
0003391813
-
-
Academic Press, New York
-
K. KURATOWSKI, “Topology, ” Vol. 2, Academic Press, New York, 1966.
-
(1966)
Topology
, vol.2
-
-
Kuratowski, K.1
-
21
-
-
0001309891
-
Cycücité finie des polycycles hyperboliques des champs de vecteurs du plan: Mise sous forme normale
-
Springer, New York/Berlin
-
A. MOURTADA, Cycücité finie des polycycles hyperboliques des champs de vecteurs du plan: mise sous forme normale, in “Lecture Notes in Mathematics, ” Vol. 1455 pp. 272-314, Springer, New York/Berlin, 1990.
-
(1990)
Lecture Notes in Mathematics
, vol.1455
, pp. 272-314
-
-
Mourtada, A.1
-
22
-
-
85027593786
-
Degenerate and non-trivial hyperbolic polycycles with two vertices
-
preprint, Université de Bourgogne, to appear in
-
A. MOURTADA, Degenerate and non-trivial hyperbolic polycycles with two vertices, preprint, Université de Bourgogne, 1991, to appear in J. Differential Equations.
-
(1991)
J. Differential Equations
-
-
Mourtada, A.1
-
23
-
-
85027611925
-
Quasi-regularity for unfoldings of hyperbolic polycycles
-
preprint, Université de Bourgogne, to appear in
-
M. EL MORSALANI, A. MOURTADA, and R. ROUSSARIE, Quasi-regularity for unfoldings of hyperbolic polycycles, preprint, Université de Bourgogne, 1992, to appear in Astérisque.
-
(1992)
Astérisque
-
-
Morsalani, M.1
Mourtada, A.2
Roussarie, R.3
-
24
-
-
0041546089
-
Linearization of normally hyperbolic diffeomorphisms and flows
-
C. C. PUGH and M. SHUB, Linearization of normally hyperbolic diffeomorphisms and flows, Invent. Math. 10 (1970), 187-198.
-
(1970)
Invent. Math.
, vol.10
, pp. 187-198
-
-
Pugh, C.C.1
Shub, M.2
-
25
-
-
51249171477
-
On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields
-
R. ROUSSARIE, On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields, Boi. Soc. Brasil. Math. 17 (1986), 67-101.
-
(1986)
Boi. Soc. Brasil. Math.
, vol.17
, pp. 67-101
-
-
Roussarie, R.1
-
26
-
-
0000776081
-
A note on finite cyclicity and Hilbert’s 16 th problem
-
Springer, New York/Berlin
-
R. ROUSSARIE, A note on finite cyclicity and Hilbert’s 16 th problem, in “Lecture Notes in Mathematics, ” Vol. 1331, pp. 161-168, Springer, New York/Berlin, 1988.
-
(1988)
Lecture Notes in Mathematics
, vol.1331
, pp. 161-168
-
-
Roussarie, R.1
-
27
-
-
36149036159
-
Cyclicité finie des lacets et des points cuspidaux
-
R. ROUSSARIE, Cyclicité finie des lacets et des points cuspidaux, Nonlinearity 2 (1989), 73-117.
-
(1989)
Nonlinearity
, vol.2
, pp. 73-117
-
-
Roussarie, R.1
-
28
-
-
0006183709
-
Bifurcation methods in quadratic systems
-
CMS-AMS, Providence, RI
-
C. ROUSSEAUC, Bifurcation methods in quadratic systems, in “Proceedings, Oscillations, Bifurcations, and Chaos. Canadian Math. Soc., Toronto 1986, ” Vol. 8, pp. 637-653, CMS-AMS, Providence, RI, 1987.
-
(1987)
Proceedings, Oscillations, Bifurcations, and Chaos. Canadian Math. Soc., Toronto 1986
, vol.8
, pp. 637-653
-
-
Rousseauc, C.1
-
29
-
-
85027606964
-
-
thesis, University of Chile
-
M. SAVEDRA, thesis, University of Chile.
-
-
-
Savedra, M.1
-
30
-
-
0001449766
-
The saddle-node separatrix loop bifurcation
-
S. SCHECTER, The saddle-node separatrix loop bifurcation, SIAM J. Math. Anal. 18 (1987), 1142-1156.
-
(1987)
SIAM J. Math. Anal.
, vol.18
, pp. 1142-1156
-
-
Schecter, S.1
-
31
-
-
84968514049
-
Algebraic integrals, integrability and the problem of the center
-
D. SCHLOMIUK, Algebraic integrals, integrability and the problem of the center, Trans. Amer. Math. Soc. 338 (1993), 799-841.
-
(1993)
Trans. Amer. Math. Soc.
, vol.338
, pp. 799-841
-
-
Schlomiuk, D.1
-
32
-
-
0001012446
-
A concrete example of the existence of four limit cycles for plane quadratic systems
-
[English edition]
-
SHI SONGLING, A concrete example of the existence of four limit cycles for plane quadratic systems, Scientia Sinica 23 (1980), 154-158. [English edition]
-
(1980)
Scientia Sinica
, vol.23
, pp. 154-158
-
-
Shi, S.1
-
33
-
-
0000152319
-
Partially hyperbolic fixed points
-
F. TAKENS, Partially hyperbolic fixed points, Topology 10 (1971), 137-147.
-
(1971)
Topology
, vol.10
, pp. 137-147
-
-
Takens, F.1
|