-
1
-
-
3843093091
-
-
Kluwer Academic Publishers, Dordrecht, The Netherlands
-
V. Faraoni, Cosmology in Scalar-Tensor Gravity (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004).
-
(2004)
Cosmology in Scalar-Tensor Gravity
-
-
Faraoni, V.1
-
2
-
-
33745833098
-
-
CQGRDG 0264-9381 10.1088/0264-9381/23/14/010
-
M. Salgado, Classical Quantum Gravity 23, 4719 (2006). CQGRDG 0264-9381 10.1088/0264-9381/23/14/010
-
(2006)
Classical Quantum Gravity
, vol.23
, pp. 4719
-
-
Salgado, M.1
-
3
-
-
0004057466
-
-
The University of Chicago Press, Chicago
-
R.M. Wald, General Relativity (The University of Chicago Press, Chicago, 1984).
-
(1984)
General Relativity
-
-
Wald, R.M.1
-
4
-
-
0002773127
-
-
edited by L. Witten (John Wiley, New York
-
R. Arnowitt, S. Deser, and C.W. Misner, in Gravitation: An Introduction to Current Research, edited by, L. Witten, (John Wiley, New York, 1962), pp. 227-265.
-
(1962)
Gravitation: An Introduction to Current Research
, pp. 227-265
-
-
Arnowitt, R.1
Deser, S.2
Misner, C.W.3
-
7
-
-
4243957354
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.75.600
-
C. Bona, J. Massó, E. Seidel, and J. Stela, Phys. Rev. Lett. 75, 600 (1995). PRLTAO 0031-9007 10.1103/PhysRevLett.75.600
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 600
-
-
Bona, C.1
Massó, J.2
Seidel, E.3
Stela, J.4
-
8
-
-
0000810297
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.68.1097
-
C. Bona and J. Massó, Phys. Rev. Lett. 68, 1097 (1992). PRLTAO 0031-9007 10.1103/PhysRevLett.68.1097
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 1097
-
-
Bona, C.1
Massó, J.2
-
9
-
-
16444368535
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.59.024007
-
T.W. Baumgarte and S.L. Shapiro, Phys. Rev. D 59, 024007 (1998). PRVDAQ 0556-2821 10.1103/PhysRevD.59.024007
-
(1998)
Phys. Rev. D
, vol.59
, pp. 024007
-
-
Baumgarte, T.W.1
Shapiro, S.L.2
-
10
-
-
0000831661
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.52.5428
-
M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995). PRVDAQ 0556-2821 10.1103/PhysRevD.52.5428
-
(1995)
Phys. Rev. D
, vol.52
, pp. 5428
-
-
Shibata, M.1
Nakamura, T.2
-
12
-
-
0038901022
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.53.6771
-
M. Salgado, D. Sudarsky, and H. Quevedo, Phys. Rev. D 53, 6771 (1996). PRVDAQ 0556-2821 10.1103/PhysRevD.53.6771
-
(1996)
Phys. Rev. D
, vol.53
, pp. 6771
-
-
Salgado, M.1
Sudarsky, D.2
Quevedo, H.3
-
13
-
-
0001938051
-
-
PYLBAJ 0370-2693 10.1016/S0370-2693(97)00798-3
-
M. Salgado, D. Sudarsky, and H. Quevedo, Phys. Lett. B 408, 69 (1997). PYLBAJ 0370-2693 10.1016/S0370-2693(97)00798-3
-
(1997)
Phys. Lett. B
, vol.408
, pp. 69
-
-
Salgado, M.1
Sudarsky, D.2
Quevedo, H.3
-
16
-
-
0000136453
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.58.124003
-
M. Salgado, D. Sudarsky, and U. Nucamendi, Phys. Rev. D 58, 124003 (1998). PRVDAQ 0556-2821 10.1103/PhysRevD.58.124003
-
(1998)
Phys. Rev. D
, vol.58
, pp. 124003
-
-
Salgado, M.1
Sudarsky, D.2
Nucamendi, U.3
-
17
-
-
0001747932
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.54.1474
-
T. Damour and G. Esposito-Farèse, Phys. Rev. D 54, 1474 (1996). PRVDAQ 0556-2821 10.1103/PhysRevD.54.1474
-
(1996)
Phys. Rev. D
, vol.54
, pp. 1474
-
-
Damour, T.1
Esposito-Farèse, G.2
-
18
-
-
43949135926
-
-
arXiv:gr-qc/0703035.
-
E. Gourgoulhon, arXiv:gr-qc/0703035.
-
-
-
Gourgoulhon, E.1
-
19
-
-
43949146083
-
-
A slightly different notation to that of Ref. has been used here in order to match with the one used in many references on numerical relativity. In order to return to the notation of, one needs to perform the transformation α→N, βi→-Ni, γij→hij for the lapse, shift and the 3-metric, respectively.
-
A slightly different notation to that of Ref. has been used here in order to match with the one used in many references on numerical relativity. In order to return to the notation of, one needs to perform the transformation α→N, βi→-Ni, γij→hij for the lapse, shift and the 3-metric, respectively.
-
-
-
-
20
-
-
4744357416
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.66.064002
-
O. Sarbach, G. Calabrese, J. Pullin, and M. Tiglio, Phys. Rev. D 66, 064002 (2002). PRVDAQ 0556-2821 10.1103/PhysRevD.66.064002
-
(2002)
Phys. Rev. D
, vol.66
, pp. 064002
-
-
Sarbach, O.1
Calabrese, G.2
Pullin, J.3
Tiglio, M.4
-
21
-
-
43949124640
-
-
arXiv:gr-qc/0403007.
-
O. Reula, arXiv:gr-qc/0403007.
-
-
-
Reula, O.1
-
22
-
-
0347112944
-
-
1433-8351
-
O.A. Reula, Living Rev. Relativity 1, 3 (1998), http://www.livingreviews. org/lrr-1998-3. 1433-8351
-
(1998)
Living Rev. Relativity
, vol.1
, pp. 3
-
-
Reula, O.A.1
-
24
-
-
0000914855
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.56.3405
-
C. Bona, J. Massó, E. Seidel, and J. Stela, Phys. Rev. D 56, 3405 (1997). PRVDAQ 0556-2821 10.1103/PhysRevD.56.3405
-
(1997)
Phys. Rev. D
, vol.56
, pp. 3405
-
-
Bona, C.1
Massó, J.2
Seidel, E.3
Stela, J.4
-
25
-
-
33645166635
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.111101
-
M. Campanelli, C.O. Lousto, P. Marronetti, and Y. Zlochower, Phys. Rev. Lett. 96, 111101 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.96.111101
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 111101
-
-
Campanelli, M.1
Lousto, C.O.2
Marronetti, P.3
Zlochower, Y.4
-
26
-
-
33645136226
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.111102
-
J.G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van Meter, Phys. Rev. Lett. 96, 111102 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.96.111102
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 111102
-
-
Baker, J.G.1
Centrella, J.2
Choi, D.-I.3
Koppitz, M.4
Van Meter, J.5
-
27
-
-
35648986763
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.76.084017
-
Y.T. Liu, S.L. Shapiro, and B.C. Stephens, Phys. Rev. D 76, 084017 (2007). PRVDAQ 0556-2821 10.1103/PhysRevD.76.084017
-
(2007)
Phys. Rev. D
, vol.76
, pp. 084017
-
-
Liu, Y.T.1
Shapiro, S.L.2
Stephens, B.C.3
-
29
-
-
33751242315
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.74.104026
-
M. Shibata, Y.T. Liu, S.L. Shapiro, and B.C. Stephens, Phys. Rev. D 74, 104026 (2006). PRVDAQ 0556-2821 10.1103/PhysRevD.74.104026
-
(2006)
Phys. Rev. D
, vol.74
, pp. 104026
-
-
Shibata, M.1
Liu, Y.T.2
Shapiro, S.L.3
Stephens, B.C.4
-
30
-
-
43949137393
-
-
In fact, as suggested in Ref., when one works with coordinates other that Cartesian-type, it turns out to be better to define ψ so that det γ∼ij=detf∼ij, where fij represents a background Riemannian metric. For instance if Σt is asymptotically flat one can take fij to be the flat metric in some coordinates adapted to the symmetry of the problem. In spherical symmetry, say, fij=diag(1,r2,r2sin 2θ) and detγ∼ij=r4sin 2θ. This approach has the advantage that ψ becomes a true scalar while all the tensorial quantities defined using γ∼ij and ψ become true tensors instead of tensor densities.
-
In fact, as suggested in Ref., when one works with coordinates other that Cartesian-type, it turns out to be better to define ψ so that det γ∼ij=detf∼ij, where fij represents a background Riemannian metric. For instance if Σt is asymptotically flat one can take fij to be the flat metric in some coordinates adapted to the symmetry of the problem. In spherical symmetry, say, fij=diag(1,r2,r2sin 2θ) and detγ∼ij=r4sin 2θ. This approach has the advantage that ψ becomes a true scalar while all the tensorial quantities defined using γ∼ij and ψ become true tensors instead of tensor densities.
-
-
-
-
31
-
-
17144365503
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.61.124014
-
A.W. Whinnett, Phys. Rev. D 61, 124014 (2000). PRVDAQ 0556-2821 10.1103/PhysRevD.61.124014
-
(2000)
Phys. Rev. D
, vol.61
, pp. 124014
-
-
Whinnett, A.W.1
-
33
-
-
37649029677
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.70.043528
-
S.M. Carroll, V. Duvvuri, M. Trodden, and M.S. Turner, Phys. Rev. D 70, 043528 (2004). PRVDAQ 0556-2821 10.1103/PhysRevD.70.043528
-
(2004)
Phys. Rev. D
, vol.70
, pp. 043528
-
-
Carroll, S.M.1
Duvvuri, V.2
Trodden, M.3
Turner, M.S.4
-
36
-
-
34347402792
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.75.124014
-
T. Chiba, T.L. Smith, and A.L. Erickcek, Phys. Rev. D 75, 124014 (2007). PRVDAQ 0556-2821 10.1103/PhysRevD.75.124014
-
(2007)
Phys. Rev. D
, vol.75
, pp. 124014
-
-
Chiba, T.1
Smith, T.L.2
Erickcek, A.L.3
-
38
-
-
18144384792
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.60.104014
-
A. Arbona, C. Bona, J. Massó, and J. Stela, Phys. Rev. D 60, 104014 (1999). PRVDAQ 0556-2821 10.1103/PhysRevD.60.104014
-
(1999)
Phys. Rev. D
, vol.60
, pp. 104014
-
-
Arbona, A.1
Bona, C.2
Massó, J.3
Stela, J.4
-
39
-
-
43949085828
-
-
For comparison purposes with the original BSSN equations, a typo in sign has to be taken into account in the second line of Eq. (24) of.
-
For comparison purposes with the original BSSN equations, a typo in sign has to be taken into account in the second line of Eq. (24) of.
-
-
-
-
40
-
-
43949091910
-
-
If the function c(t,x) is globally null, the equation for u2 decouples and u2 is itself an eigenfunction propagating with speed d; the other eigenvalue and eigenfunction can be obtained by proceeding in the same way, taking c=0 in Eq. 3. This results in w2=u1+bu2/(a-d) (with a≠d) and λ2=a. However, if c=0, a=d, and b≠0 then the system degenerates and becomes weakly hyperbolic. In such a case the characteristic matrix is a Jordan block [cf. Eq. 4], which implies that it cannot be diagonalized. A similar situation happens if b=0, a=d, and c≠0. On the other hand, if c=0=b then both Eqs. 1 2 decouple and therefore u1 and u2 are themselves eigenfunctions (or any linear combination of them is an eigenfunction as well if in addition a=d).
-
If the function c(t,x) is globally null, the equation for u2 decouples and u2 is itself an eigenfunction propagating with speed d; the other eigenvalue and eigenfunction can be obtained by proceeding in the same way, taking c=0 in Eq. 3. This results in w2=u1+bu2/(a-d) (with a≠d) and λ2=a. However, if c=0, a=d, and b≠0 then the system degenerates and becomes weakly hyperbolic. In such a case the characteristic matrix is a Jordan block [cf. Eq. 4], which implies that it cannot be diagonalized. A similar situation happens if b=0, a=d, and c≠0. On the other hand, if c=0=b then both Eqs. 1 2 decouple and therefore u1 and u2 are themselves eigenfunctions (or any linear combination of them is an eigenfunction as well if in addition a=d).
-
-
-
|