메뉴 건너뛰기




Volumn 77, Issue 10, 2008, Pages

Hyperbolicity of scalar-tensor theories of gravity

Author keywords

[No Author keywords available]

Indexed keywords


EID: 43949124853     PISSN: 15507998     EISSN: 15502368     Source Type: Journal    
DOI: 10.1103/PhysRevD.77.104010     Document Type: Article
Times cited : (65)

References (40)
  • 1
  • 2
    • 33745833098 scopus 로고    scopus 로고
    • CQGRDG 0264-9381 10.1088/0264-9381/23/14/010
    • M. Salgado, Classical Quantum Gravity 23, 4719 (2006). CQGRDG 0264-9381 10.1088/0264-9381/23/14/010
    • (2006) Classical Quantum Gravity , vol.23 , pp. 4719
    • Salgado, M.1
  • 3
    • 0004057466 scopus 로고
    • The University of Chicago Press, Chicago
    • R.M. Wald, General Relativity (The University of Chicago Press, Chicago, 1984).
    • (1984) General Relativity
    • Wald, R.M.1
  • 8
    • 0000810297 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.68.1097
    • C. Bona and J. Massó, Phys. Rev. Lett. 68, 1097 (1992). PRLTAO 0031-9007 10.1103/PhysRevLett.68.1097
    • (1992) Phys. Rev. Lett. , vol.68 , pp. 1097
    • Bona, C.1    Massó, J.2
  • 9
    • 16444368535 scopus 로고    scopus 로고
    • PRVDAQ 0556-2821 10.1103/PhysRevD.59.024007
    • T.W. Baumgarte and S.L. Shapiro, Phys. Rev. D 59, 024007 (1998). PRVDAQ 0556-2821 10.1103/PhysRevD.59.024007
    • (1998) Phys. Rev. D , vol.59 , pp. 024007
    • Baumgarte, T.W.1    Shapiro, S.L.2
  • 10
    • 0000831661 scopus 로고
    • PRVDAQ 0556-2821 10.1103/PhysRevD.52.5428
    • M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995). PRVDAQ 0556-2821 10.1103/PhysRevD.52.5428
    • (1995) Phys. Rev. D , vol.52 , pp. 5428
    • Shibata, M.1    Nakamura, T.2
  • 12
    • 0038901022 scopus 로고    scopus 로고
    • PRVDAQ 0556-2821 10.1103/PhysRevD.53.6771
    • M. Salgado, D. Sudarsky, and H. Quevedo, Phys. Rev. D 53, 6771 (1996). PRVDAQ 0556-2821 10.1103/PhysRevD.53.6771
    • (1996) Phys. Rev. D , vol.53 , pp. 6771
    • Salgado, M.1    Sudarsky, D.2    Quevedo, H.3
  • 13
    • 0001938051 scopus 로고    scopus 로고
    • PYLBAJ 0370-2693 10.1016/S0370-2693(97)00798-3
    • M. Salgado, D. Sudarsky, and H. Quevedo, Phys. Lett. B 408, 69 (1997). PYLBAJ 0370-2693 10.1016/S0370-2693(97)00798-3
    • (1997) Phys. Lett. B , vol.408 , pp. 69
    • Salgado, M.1    Sudarsky, D.2    Quevedo, H.3
  • 16
    • 0000136453 scopus 로고    scopus 로고
    • PRVDAQ 0556-2821 10.1103/PhysRevD.58.124003
    • M. Salgado, D. Sudarsky, and U. Nucamendi, Phys. Rev. D 58, 124003 (1998). PRVDAQ 0556-2821 10.1103/PhysRevD.58.124003
    • (1998) Phys. Rev. D , vol.58 , pp. 124003
    • Salgado, M.1    Sudarsky, D.2    Nucamendi, U.3
  • 17
    • 0001747932 scopus 로고    scopus 로고
    • PRVDAQ 0556-2821 10.1103/PhysRevD.54.1474
    • T. Damour and G. Esposito-Farèse, Phys. Rev. D 54, 1474 (1996). PRVDAQ 0556-2821 10.1103/PhysRevD.54.1474
    • (1996) Phys. Rev. D , vol.54 , pp. 1474
    • Damour, T.1    Esposito-Farèse, G.2
  • 18
    • 43949135926 scopus 로고    scopus 로고
    • arXiv:gr-qc/0703035.
    • E. Gourgoulhon, arXiv:gr-qc/0703035.
    • Gourgoulhon, E.1
  • 19
    • 43949146083 scopus 로고    scopus 로고
    • A slightly different notation to that of Ref. has been used here in order to match with the one used in many references on numerical relativity. In order to return to the notation of, one needs to perform the transformation α→N, βi→-Ni, γij→hij for the lapse, shift and the 3-metric, respectively.
    • A slightly different notation to that of Ref. has been used here in order to match with the one used in many references on numerical relativity. In order to return to the notation of, one needs to perform the transformation α→N, βi→-Ni, γij→hij for the lapse, shift and the 3-metric, respectively.
  • 21
    • 43949124640 scopus 로고    scopus 로고
    • arXiv:gr-qc/0403007.
    • O. Reula, arXiv:gr-qc/0403007.
    • Reula, O.1
  • 22
    • 0347112944 scopus 로고    scopus 로고
    • 1433-8351
    • O.A. Reula, Living Rev. Relativity 1, 3 (1998), http://www.livingreviews. org/lrr-1998-3. 1433-8351
    • (1998) Living Rev. Relativity , vol.1 , pp. 3
    • Reula, O.A.1
  • 23
    • 85038272624 scopus 로고    scopus 로고
    • PRVDAQ 0556-2821 10.1103/PhysRevD.64.064017
    • L.E. Kidder, M.A. Scheel, and S.A. Teukolsky, Phys. Rev. D 64, 064017 (2001). PRVDAQ 0556-2821 10.1103/PhysRevD.64.064017
    • (2001) Phys. Rev. D , vol.64 , pp. 064017
    • Kidder, L.E.1    Scheel, M.A.2    Teukolsky, S.A.3
  • 24
    • 0000914855 scopus 로고    scopus 로고
    • PRVDAQ 0556-2821 10.1103/PhysRevD.56.3405
    • C. Bona, J. Massó, E. Seidel, and J. Stela, Phys. Rev. D 56, 3405 (1997). PRVDAQ 0556-2821 10.1103/PhysRevD.56.3405
    • (1997) Phys. Rev. D , vol.56 , pp. 3405
    • Bona, C.1    Massó, J.2    Seidel, E.3    Stela, J.4
  • 27
    • 35648986763 scopus 로고    scopus 로고
    • PRVDAQ 0556-2821 10.1103/PhysRevD.76.084017
    • Y.T. Liu, S.L. Shapiro, and B.C. Stephens, Phys. Rev. D 76, 084017 (2007). PRVDAQ 0556-2821 10.1103/PhysRevD.76.084017
    • (2007) Phys. Rev. D , vol.76 , pp. 084017
    • Liu, Y.T.1    Shapiro, S.L.2    Stephens, B.C.3
  • 30
    • 43949137393 scopus 로고    scopus 로고
    • In fact, as suggested in Ref., when one works with coordinates other that Cartesian-type, it turns out to be better to define ψ so that det γ∼ij=detf∼ij, where fij represents a background Riemannian metric. For instance if Σt is asymptotically flat one can take fij to be the flat metric in some coordinates adapted to the symmetry of the problem. In spherical symmetry, say, fij=diag(1,r2,r2sin 2θ) and detγ∼ij=r4sin 2θ. This approach has the advantage that ψ becomes a true scalar while all the tensorial quantities defined using γ∼ij and ψ become true tensors instead of tensor densities.
    • In fact, as suggested in Ref., when one works with coordinates other that Cartesian-type, it turns out to be better to define ψ so that det γ∼ij=detf∼ij, where fij represents a background Riemannian metric. For instance if Σt is asymptotically flat one can take fij to be the flat metric in some coordinates adapted to the symmetry of the problem. In spherical symmetry, say, fij=diag(1,r2,r2sin 2θ) and detγ∼ij=r4sin 2θ. This approach has the advantage that ψ becomes a true scalar while all the tensorial quantities defined using γ∼ij and ψ become true tensors instead of tensor densities.
  • 31
    • 17144365503 scopus 로고    scopus 로고
    • PRVDAQ 0556-2821 10.1103/PhysRevD.61.124014
    • A.W. Whinnett, Phys. Rev. D 61, 124014 (2000). PRVDAQ 0556-2821 10.1103/PhysRevD.61.124014
    • (2000) Phys. Rev. D , vol.61 , pp. 124014
    • Whinnett, A.W.1
  • 36
    • 34347402792 scopus 로고    scopus 로고
    • PRVDAQ 0556-2821 10.1103/PhysRevD.75.124014
    • T. Chiba, T.L. Smith, and A.L. Erickcek, Phys. Rev. D 75, 124014 (2007). PRVDAQ 0556-2821 10.1103/PhysRevD.75.124014
    • (2007) Phys. Rev. D , vol.75 , pp. 124014
    • Chiba, T.1    Smith, T.L.2    Erickcek, A.L.3
  • 38
    • 18144384792 scopus 로고    scopus 로고
    • PRVDAQ 0556-2821 10.1103/PhysRevD.60.104014
    • A. Arbona, C. Bona, J. Massó, and J. Stela, Phys. Rev. D 60, 104014 (1999). PRVDAQ 0556-2821 10.1103/PhysRevD.60.104014
    • (1999) Phys. Rev. D , vol.60 , pp. 104014
    • Arbona, A.1    Bona, C.2    Massó, J.3    Stela, J.4
  • 39
    • 43949085828 scopus 로고    scopus 로고
    • For comparison purposes with the original BSSN equations, a typo in sign has to be taken into account in the second line of Eq. (24) of.
    • For comparison purposes with the original BSSN equations, a typo in sign has to be taken into account in the second line of Eq. (24) of.
  • 40
    • 43949091910 scopus 로고    scopus 로고
    • If the function c(t,x) is globally null, the equation for u2 decouples and u2 is itself an eigenfunction propagating with speed d; the other eigenvalue and eigenfunction can be obtained by proceeding in the same way, taking c=0 in Eq. 3. This results in w2=u1+bu2/(a-d) (with a≠d) and λ2=a. However, if c=0, a=d, and b≠0 then the system degenerates and becomes weakly hyperbolic. In such a case the characteristic matrix is a Jordan block [cf. Eq. 4], which implies that it cannot be diagonalized. A similar situation happens if b=0, a=d, and c≠0. On the other hand, if c=0=b then both Eqs. 1 2 decouple and therefore u1 and u2 are themselves eigenfunctions (or any linear combination of them is an eigenfunction as well if in addition a=d).
    • If the function c(t,x) is globally null, the equation for u2 decouples and u2 is itself an eigenfunction propagating with speed d; the other eigenvalue and eigenfunction can be obtained by proceeding in the same way, taking c=0 in Eq. 3. This results in w2=u1+bu2/(a-d) (with a≠d) and λ2=a. However, if c=0, a=d, and b≠0 then the system degenerates and becomes weakly hyperbolic. In such a case the characteristic matrix is a Jordan block [cf. Eq. 4], which implies that it cannot be diagonalized. A similar situation happens if b=0, a=d, and c≠0. On the other hand, if c=0=b then both Eqs. 1 2 decouple and therefore u1 and u2 are themselves eigenfunctions (or any linear combination of them is an eigenfunction as well if in addition a=d).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.