메뉴 건너뛰기




Volumn 37, Issue 7, 2008, Pages 1065-1080

Linearization and first-order expansion of the rocking motion of rigid blocks stepping on viscoelastic foundation

Author keywords

Equivalent linearization; First order expansion; Non linear dynamics; Overturning; Rocking; Seismic stability; Uplifting

Indexed keywords

EIGENVALUES AND EIGENFUNCTIONS; FOUNDATIONS; LINEAR EQUATIONS; LINEARIZATION; SEISMIC RESPONSE;

EID: 43749118417     PISSN: 00988847     EISSN: 10969845     Source Type: Journal    
DOI: 10.1002/eqe.799     Document Type: Article
Times cited : (14)

References (5)
  • 1
    • 43749101150 scopus 로고    scopus 로고
    • Response analysis of rigid structures rocking in viscoelastic foundation
    • 1 Palmeri A, Makris N. Response analysis of rigid structures rocking in viscoelastic foundation. Earthquake Engineering and Structural Dynamics 2008 ; DOI: 10.1002/eqe.800.
    • (2008) Earthquake Engineering and Structural Dynamics
    • Palmeri, A1    Makris, N2
  • 2
    • 0001360539 scopus 로고
    • The behaviour of inverted pendulum structures during earthquakes
    • 2 Housner GW. The behaviour of inverted pendulum structures during earthquakes. Bulletin of the Seismological Society of America 1963 ; 53: 404–417.
    • (1963) Bulletin of the Seismological Society of America , vol.53 , pp. 404-417
    • Housner, GW1
  • 4
    • 85120594153 scopus 로고    scopus 로고
    • Response analysis of rigid structures rocking on viscoelastic foundation
    • 4 Palmeri A, Makris N. Response analysis of rigid structures rocking on viscoelastic foundation. Report No. EEAM 2005‐02, 2005.
    • (2005)
    • Palmeri, A1    Makris, N2
  • 5
    • 85024576291 scopus 로고
    • Classical normal modes in damped linear dynamic systems
    • 5 Caughey TK, O'Kelly MEJ. Classical normal modes in damped linear dynamic systems. Journal of Applied Mechanics (ASME) 1965 ; 32: 583–588.
    • (1965) Journal of Applied Mechanics , vol.32 , pp. 583-588
    • Caughey, TK1    O'Kelly, MEJ2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.