-
1
-
-
0037231604
-
Analytical study on wall friction in a pipe induced by oscillatory Maxwell flows
-
Zhu, K. Q., Fan, Y., Shen, P. P., and Wang, J. L. Analytical study on wall friction in a pipe induced by oscillatory Maxwell flows. Acta Petrolei Sini., 2003, 24(1), 9-12.
-
(2003)
Acta Petrolei Sini
, vol.24
, Issue.1
, pp. 9-12
-
-
Zhu, K.Q.1
Fan, Y.2
Shen, P.P.3
Wang, J.L.4
-
2
-
-
0018927384
-
Wall friction and local heat transfer in oscillatory flow - two-dimensionless unsteady laminar boundary layer on a flat plate
-
Ishida, M. and Yamada, T. Wall friction and local heat transfer in oscillatory flow - two-dimensionless unsteady laminar boundary layer on a flat plate. Bull. JSME, 1980, 23(183),1467-1474.
-
(1980)
Bull. JSME
, vol.23
, Issue.183
, pp. 1467-1474
-
-
Ishida, M.1
Yamada, T.2
-
3
-
-
0028294757
-
Skin friction and heat transfer in rapidly oscillating boundary layers
-
Ten Bosch, B. I. M. and Weisenborn, A. J. Skin friction and heat transfer in rapidly oscillating boundary layers. Appl. Sci. Res. (The Hague), 1994, 52(1), 37-49.
-
(1994)
Appl. Sci. Res. (The Hague)
, vol.52
, Issue.1
, pp. 37-49
-
-
Ten Bosch, B.I.M.1
Weisenborn, A.J.2
-
4
-
-
0242628115
-
Friction characteristics of oscillatory laminar flow in straight tube
-
Ye, X. F. and Zhang, J. W. Friction characteristics of oscillatory laminar flow in straight tube. Chin. J. Appl. Mech., 2003, 20(3), 43-47.
-
(2003)
Chin. J. Appl. Mech
, vol.20
, Issue.3
, pp. 43-47
-
-
Ye, X.F.1
Zhang, J.W.2
-
5
-
-
84918383033
-
Theory of propagation of elastic waves in a fluid-saturated porous solid. I Low-frequency range
-
Biot, M. A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I Low-frequency range. J. Acoust. Soc. Am., 1956, 28(2), 168-191.
-
(1956)
J. Acoust. Soc. Am
, vol.28
, Issue.2
, pp. 168-191
-
-
Biot, M.A.1
-
7
-
-
0036155465
-
Relaxation modulus in PMMA and PTFE fitting by fractional derivative Maxwell model
-
Hernández-Jiménez, A., Hernández-Sandago, J., Macias-Garcxa, A., and Sánchez-González, J. Relaxation modulus in PMMA and PTFE fitting by fractional derivative Maxwell model. Polym. Test., 2002, 21, 325-331.
-
(2002)
Polym. Test
, vol.21
, pp. 325-331
-
-
Hernández-Jiménez, A.1
Hernández-Sandago, J.2
Macias-Garcxa, A.3
Sánchez-González, J.4
-
8
-
-
34147216977
-
Viscoelastic behavior analysis and application fractional derivative Maxwell model
-
Jia, J. H., Shen, X. Y., and Hua, H. X. Viscoelastic behavior analysis and application fractional derivative Maxwell model. J. Vib. Control, 2007, 13(4), 385-401.
-
(2007)
J. Vib. Control
, vol.13
, Issue.4
, pp. 385-401
-
-
Jia, J.H.1
Shen, X.Y.2
Hua, H.X.3
-
9
-
-
0035216379
-
A new method for solving dynamic problems of fractional derivative viscoelasticity
-
Rossikhin, Y. A. and Shitikova, M. V. A new method for solving dynamic problems of fractional derivative viscoelasticity. Int. J. Eng. Sci., 2001, 39, 149-176.
-
(2001)
Int. J. Eng. Sci
, vol.39
, pp. 149-176
-
-
Rossikhin, Y.A.1
Shitikova, M.V.2
-
10
-
-
0032456990
-
Study on the constitutive equation with fractional derivative for the viscoelastic fluids - modified Jeffreys model and its application
-
Dao, Y. S. and Ti, Q. J. Study on the constitutive equation with fractional derivative for the viscoelastic fluids - modified Jeffreys model and its application. Rheol. Acta, 1998, 37, 512-517.
-
(1998)
Rheol. Acta
, vol.37
, pp. 512-517
-
-
Dao, Y.S.1
Ti, Q.J.2
-
11
-
-
0000756969
-
Anomalous stability behavior of a properly invariant constitutive equation which generalises fractional derivative models
-
Palade, L. I., Attane, P., Huilgol, R. R., and Mena, B. Anomalous stability behavior of a properly invariant constitutive equation which generalises fractional derivative models. Int. J. Eng. Sci., 1999, 37, 315-329.
-
(1999)
Int. J. Eng. Sci
, vol.37
, pp. 315-329
-
-
Palade, L.I.1
Attane, P.2
Huilgol, R.R.3
Mena, B.4
-
12
-
-
0033690314
-
Resonance behavior of viscoelastic fluids in Poiseuille flow and application to flow enhancement
-
Andrienko, Y. A., Siginer, D. A., and Yanovsky, Y. G. Resonance behavior of viscoelastic fluids in Poiseuille flow and application to flow enhancement. Int. J. Non-Linear Mech., 2000, 35(1), 95-102.
-
(2000)
Int. J. Non-Linear Mech
, vol.35
, Issue.1
, pp. 95-102
-
-
Andrienko, Y.A.1
Siginer, D.A.2
Yanovsky, Y.G.3
-
13
-
-
0037410852
-
A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates
-
Tan, W. C., Pan, W. X., and Xu, M. Y. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. Int. J. Non-Linear Mech., 2003, 38(5), 645-650.
-
(2003)
Int. J. Non-Linear Mech
, vol.38
, Issue.5
, pp. 645-650
-
-
Tan, W.C.1
Pan, W.X.2
Xu, M.Y.3
-
14
-
-
32144446304
-
Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model
-
Yin, Y. B. and Zhu, K. Q. Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model. Appl. Math. Comput., 2006, 173(1), 231-242.
-
(2006)
Appl. Math. Comput
, vol.173
, Issue.1
, pp. 231-242
-
-
Yin, Y.B.1
Zhu, K.Q.2
-
16
-
-
0004315248
-
-
Springer, New York
-
West, B. J., Bologna, M., and Grigolini, P. Physics of fractal operators, 2003 (Springer, New York).
-
(2003)
Physics of fractal operators
-
-
West, B.J.1
Bologna, M.2
Grigolini, P.3
-
19
-
-
25144480240
-
-
2nd edition, Shanghai Jiao Tong Press, Shanghai, China
-
Wang, J. L. and Xiang, G. H. Specific functions and equations of mathematical physics, 2nd edition, 2000 (Shanghai Jiao Tong Press, Shanghai, China).
-
(2000)
Specific functions and equations of mathematical physics
-
-
Wang, J.L.1
Xiang, G.H.2
|