-
1
-
-
10844282779
-
-
EPAPFV 1286-0042 10.1051/epjap:2004206
-
J. Robertson, Eur. Phys. J.: Appl. Phys. EPAPFV 1286-0042 10.1051/epjap:2004206 28, 265 (2004).
-
(2004)
Eur. Phys. J.: Appl. Phys.
, vol.28
, pp. 265
-
-
Robertson, J.1
-
2
-
-
33644520929
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.73.075328
-
P. W. Peacock, K. Xiong, K. Y. Tse, and J. Robertson, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.73.075328 73, 075328 (2006)
-
(2006)
Phys. Rev. B
, vol.73
, pp. 075328
-
-
Peacock, P.W.1
Xiong, K.2
Tse, K.Y.3
Robertson, J.4
-
3
-
-
33847760293
-
-
JAPIAU 0021-8979 10.1063/1.2409662
-
K. Xiong, Y. Du, K. Tse, and J. Robertson, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.2409662 101, 024101 (2007)
-
(2007)
J. Appl. Phys.
, vol.101
, pp. 024101
-
-
Xiong, K.1
Du, Y.2
Tse, K.3
Robertson, J.4
-
4
-
-
34347382157
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.75.245304
-
S. Monaghan, J. C. Greer, and S. D. Elliott, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.75.245304 75, 245304 (2007), and references therein.
-
(2007)
Phys. Rev. B
, vol.75
, pp. 245304
-
-
Monaghan, S.1
Greer, J.C.2
Elliott, S.D.3
-
5
-
-
0037718399
-
-
EDLEDZ 0741-3106 10.1109/LED.2003.808844
-
A. Kerber, E. Cartier, L. Pantisano, R. Degraeve, T. Kauerauf, Y. Kim, A. Hou, G. Groeseneken, H. E. Maes, and U. Schwalke, IEEE Electron Device Lett. EDLEDZ 0741-3106 10.1109/LED.2003.808844 24, 87 (2003).
-
(2003)
IEEE Electron Device Lett.
, vol.24
, pp. 87
-
-
Kerber, A.1
Cartier, E.2
Pantisano, L.3
Degraeve, R.4
Kauerauf, T.5
Kim, Y.6
Hou, A.7
Groeseneken, G.8
Maes, H.E.9
Schwalke, U.10
-
6
-
-
20644440412
-
-
ITDMA2 1530-4388 10.1109/TDMR.2005.845880
-
S. Zafar, A. Kumar, E. Gusev, and E. Cartier, IEEE Trans. Device Mater. Reliab. ITDMA2 1530-4388 10.1109/TDMR.2005.845880 5, 45 (2005).
-
(2005)
IEEE Trans. Device Mater. Reliab.
, vol.5
, pp. 45
-
-
Zafar, S.1
Kumar, A.2
Gusev, E.3
Cartier, E.4
-
7
-
-
34248667023
-
-
MIENEF 0167-9317 10.1016/j.mee.2007.04.020
-
K. Tse, D. Liu, K. Xiong, and J. Robertson, Microelectron. Eng. MIENEF 0167-9317 10.1016/j.mee.2007.04.020 84, 2028 (2007).
-
(2007)
Microelectron. Eng.
, vol.84
, pp. 2028
-
-
Tse, K.1
Liu, D.2
Xiong, K.3
Robertson, J.4
-
11
-
-
79955987445
-
-
APPLAB 0003-6951 10.1063/1.1466534
-
B. K. Park, J. Park, M. Cho, C. S. Hwang, K. Oh, Y. Han, and D. Y. Yang, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.1466534 80, 2368 (2002).
-
(2002)
Appl. Phys. Lett.
, vol.80
, pp. 2368
-
-
Park, B.K.1
Park, J.2
Cho, M.3
Hwang, C.S.4
Oh, K.5
Han, Y.6
Yang, D.Y.7
-
12
-
-
33845615542
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.74.125108
-
D. Ceresoli and D. Vanderbilt, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.74.125108 74, 125108 (2006).
-
(2006)
Phys. Rev. B
, vol.74
, pp. 125108
-
-
Ceresoli, D.1
Vanderbilt, D.2
-
13
-
-
34249038462
-
-
MIENEF 0167-9317 10.1016/j.mee.2007.04.013
-
P. Broqvist and A. Pasquarello, Microelectron. Eng. MIENEF 0167-9317 10.1016/j.mee.2007.04.013 84, 2416 (2007).
-
(2007)
Microelectron. Eng.
, vol.84
, pp. 2416
-
-
Broqvist, P.1
Pasquarello, A.2
-
14
-
-
34248634315
-
-
MIENEF 0167-9317 10.1016/j.mee.2007.04.083
-
C. Kaneta and T. Yamasaki, Microelectron. Eng. MIENEF 0167-9317 10.1016/j.mee.2007.04.083 84, 2370 (2007).
-
(2007)
Microelectron. Eng.
, vol.84
, pp. 2370
-
-
Kaneta, C.1
Yamasaki, T.2
-
15
-
-
43449110590
-
-
The AIMD simulations were performed by using ultrasoft pseudopotentials (Ref.) and a GGA approximation for the exchange-correlation potential (Ref.), as implemented in the VASP code (Ref.). In order to generate an atomic structure of amorphous HfO2, we have used a 96 atom supercell (32 Hf and 64 O), obtained as a (2×2×2) expansion of the 12 atom monoclinic unit cell. The plane wave energy cutoff was 400 eV, and the Brillouin zone was sampled at the Γ point. During the simulations, the size of supercell was kept constant at the optimized bulk crystal value. The simulation started from the crystalline structure at room temperature, and the system was gradually heated during 1000 MD to 5500 K (time step of 3× 10-15s), and was then equilibrated at this average temperature (NVE ensemble) for 2000 MD steps, and subsequently cooled from 5500 K down to 300 K in 1000 MD steps, and equilibrated for another 500 MD steps
-
The AIMD simulations were performed by using ultrasoft pseudopotentials (Ref.) and a GGA approximation for the exchange-correlation potential (Ref.), as implemented in the VASP code (Ref.). In order to generate an atomic structure of amorphous HfO2, we have used a 96 atom supercell (32 Hf and 64 O), obtained as a (2×2×2) expansion of the 12 atom monoclinic unit cell. The plane wave energy cutoff was 400 eV, and the Brillouin zone was sampled at the Γ point. During the simulations, the size of supercell was kept constant at the optimized bulk crystal value. The simulation started from the crystalline structure at room temperature, and the system was gradually heated during 1000 MD to 5500 K (time step of 3× 10-15s), and was then equilibrated at this average temperature (NVE ensemble) for 2000 MD steps, and subsequently cooled from 5500 K down to 300 K in 1000 MD steps, and equilibrated for another 500 MD steps. As a final procedure, the structure was fully relaxed (T=0K) such that in the equilibrium final geometry of the disordered system the forces on all the atoms were smaller than 0.025eV/.
-
-
-
-
16
-
-
20544463457
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.41.7892
-
D. Vanderbilt, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.41.7892 41, 7892 (1990).
-
(1990)
Phys. Rev. B
, vol.41
, pp. 7892
-
-
Vanderbilt, D.1
-
17
-
-
23244460838
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.46.6671
-
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.46. 6671 46, 6671 (1992).
-
(1992)
Phys. Rev. B
, vol.46
, pp. 6671
-
-
Perdew, J.P.1
Chevary, J.A.2
Vosko, S.H.3
Jackson, K.A.4
Pederson, M.R.5
Singh, D.J.6
Fiolhais, C.7
-
18
-
-
12844286241
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.47.558
-
G. Kresse and J. Hafner, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.47.558 47, 558 (1993)
-
(1993)
Phys. Rev. B
, vol.47
, pp. 558
-
-
Kresse, G.1
Hafner, J.2
-
19
-
-
35949007146
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.48.13115
-
G. Kresse and J. Hafner, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.48.13115 48, 13115 (1993);
-
(1993)
Phys. Rev. B
, vol.48
, pp. 13115
-
-
Kresse, G.1
Hafner, J.2
-
20
-
-
0030190741
-
-
CMMSEM 0927-0256 10.1016/0927-0256(96)00008-0
-
G. Kresse and J. Furthmuller, Comput. Mater. Sci. CMMSEM 0927-0256 10.1016/0927-0256(96)00008-0 6, 15 (1996).
-
(1996)
Comput. Mater. Sci.
, vol.6
, pp. 15
-
-
Kresse, G.1
Furthmuller, J.2
-
21
-
-
16344389373
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.71.085107
-
X. Y. Zhao, D. Ceresoli, and D. Vanderbilt, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.71.085107 71, 085107 (2005).
-
(2005)
Phys. Rev. B
, vol.71
, pp. 085107
-
-
Zhao, X.Y.1
Ceresoli, D.2
Vanderbilt, D.3
-
22
-
-
33947305102
-
-
JAPIAU 0021-8979 10.1063/1.2464184
-
T. V. Perevalov, V. A. Gritsenko, S. B. Erenburg, A. M. Badalyan, H. Wong, and C. W. Kim, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.2464184 101, 053704 (2007).
-
(2007)
J. Appl. Phys.
, vol.101
, pp. 053704
-
-
Perevalov, T.V.1
Gritsenko, V.A.2
Erenburg, S.B.3
Badalyan, A.M.4
Wong, H.5
Kim, C.W.6
-
23
-
-
0001594738
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.58.11266
-
A. Zupan, P. Blaha, K. Schwarz, and J. P. Perdew, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.58.11266 58, 11266 (1998).
-
(1998)
Phys. Rev. B
, vol.58
, pp. 11266
-
-
Zupan, A.1
Blaha, P.2
Schwarz, K.3
Perdew, J.P.4
-
24
-
-
13244267586
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.68.054106
-
J. Kang, E.-C. Lee, and K. J. Chang, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.68.054106 68, 054106 (2003).
-
(2003)
Phys. Rev. B
, vol.68
, pp. 054106
-
-
Kang, J.1
Lee, E.-C.2
Chang, K.J.3
-
25
-
-
1642588409
-
-
APPLAB 0003-6951 10.1063/1.1650874
-
W. L. Scopel, A. J. R. Silva, W. Orellana, and A. Fazzio, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.1650874 84, 1492 (2004).
-
(2004)
Appl. Phys. Lett.
, vol.84
, pp. 1492
-
-
Scopel, W.L.1
Silva, A.J.R.2
Orellana, W.3
Fazzio, A.4
-
26
-
-
0036573608
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.65.174117
-
A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.65.174117 65, 174117 (2002).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 174117
-
-
Foster, A.S.1
Lopez Gejo, F.2
Shluger, A.L.3
Nieminen, R.M.4
-
27
-
-
33646891317
-
-
MIGIEA 0927-796X 10.1016/j.mser.2006.04.001
-
M. Houssaa, L. Pantisanoa, L.-. Ragnarssona, R. Degraevea, T. Schrama, G. Pourtoisa, S. De Gendta, G. Groesenekena, and M. M. Heyns, Mater. Sci. Eng., R. MIGIEA 0927-796X 10.1016/j.mser.2006.04.001 51, 37 (2006).
-
(2006)
Mater. Sci. Eng., R.
, vol.51
, pp. 37
-
-
Houssaa, M.1
Pantisanoa, L.2
Ragnarssona, L.-A.3
Degraevea, R.4
Schrama, T.5
Pourtoisa, G.6
De Gendta, S.7
Groesenekena, G.8
Heyns, M.M.9
-
29
-
-
34248649607
-
-
MIENEF 0167-9317 10.1016/j.mee.2007.04.006
-
D. Fischer and A. Kersch, Microelectron. Eng. MIENEF 0167-9317 10.1016/j.mee.2007.04.006 84, 2039 (2007).
-
(2007)
Microelectron. Eng.
, vol.84
, pp. 2039
-
-
Fischer, D.1
Kersch, A.2
-
30
-
-
0041379612
-
-
JAPNDE 0021-4922 10.1143/JJAP.42.3593
-
S. Stemmer, Z. Chen, C. G. Levi, P. S. Lysaght, B. Foran, J. A. Gisby, and J. R. Taylor, Jpn. J. Appl. Phys., Part 1 JAPNDE 0021-4922 10.1143/JJAP.42.3593 42, 3593 (2003)
-
(2003)
Jpn. J. Appl. Phys., Part 1
, vol.42
, pp. 3593
-
-
Stemmer, S.1
Chen, Z.2
Levi, C.G.3
Lysaght, P.S.4
Foran, B.5
Gisby, J.A.6
Taylor, J.R.7
-
31
-
-
43449109036
-
-
0003-6951
-
S. Stemmer, Y. Li, B. Foran, P. S. Lysaght, S. K. Streiffer, P. Fuoss, and S. Seifert, Appl. Phys. Lett. 85, 3143 (2003). 0003-6951
-
(2003)
Appl. Phys. Lett.
, vol.85
, pp. 3143
-
-
Stemmer, S.1
Li, Y.2
Foran, B.3
Lysaght, P.S.4
Streiffer, S.K.5
Fuoss, P.6
Seifert, S.7
|